Trends in Surgical Research in Head and Neck Cancer

  • Genrich TolstonogEmail author
  • Christian Simon
Head and Neck Cancer (L Licitra, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Head and Neck Cancer

Opinion statement

The task of surgical research is to improve the efficacy of available surgical therapeutic modalities, develop new ones, and balance this well with favorable functional outcome. Therefore, surgical research is composed of a translational and a clinical component. In translational surgical research, animal models are used to better understand the biology of head and neck cancers, but even more importantly, the biology of changes to the disease and the microenvironment created by surgical interventions. Animal models additionally allow for the development of image-guided surgery systems, novel strategies of intraoperative adjuvant treatment, and patient “avatars” to test innovative anticancer drug combinations. In clinical surgical research, surgical techniques are validated in clinical trials for effectiveness of tumor control and improvement of functional recovery of the patient. In conclusion, surgical research for head and neck cancer is an active field spanning across the entire breadth of basic and clinical science devoted to a better understanding of what surgery does to the disease and to the patient.


Head and neck cancer HNSCC Animal models Clinical trials Translational research 



We thank the Swiss National Science Foundation (SNF 310030L_144267 and 310030_152875) for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

Although this article refers to previously conducted studies with human and/or animal subjects performed by the authors, no new studies were conducted for this particular article.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lei ZG, Ren XH, Wang SS, Liang XH, Tang YL. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma. OncoTargets and therapy. 2016;9:545–55. doi: 10.2147/OTT.S95633.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sano D, Myers JN. Xenograft models of head and neck cancers. Head & neck oncology. 2009;1:32. doi: 10.1186/1758-3284-1-32.CrossRefGoogle Scholar
  3. 3.
    • Behren A, Kamenisch Y, Muehlen S, Flechtenmacher C, Haberkorn U, Hilber H, et al. Development of an oral cancer recurrence mouse model after surgical resection. Int J Oncol. 2010;36(4):849–55. This report presents the first mouse model of oral post-surgical tumor recurrence.Google Scholar
  4. 4.
    Chinn SB, Darr OA, Owen JH, Bellile E, McHugh JB, Spector ME, et al. Cancer stem cells: mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head & neck. 2015;37(3):317–26. doi: 10.1002/hed.23600.CrossRefGoogle Scholar
  5. 5.
    • Atallah I, Milet C, Henry M, Josserand V, Reyt E, Coll JL, et al. Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma. Head & neck. 2016;38(Suppl 1):E246–55. doi: 10.1002/hed.23980. This study describes a new surgical xenograft mouse model based on HNSCC tumor piece implantation into the cheek and the application of the AngioStamp 800 NIR fluorescent probe for image-guided resection.
  6. 6.
    •• Kerk S, Finkel K, Pearson AT, Warner K, Nor F, Zhang Z, et al. 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016; doi: 10.1158/1078-0432.CCR-16-1834. In this publication, Kerk and colleagues demonstrated a recurrence-preventive effect of neoadjuvantly administrated MEDI0641 antibody-drug conjugate in surgical HNSCC PDX models. MEDI0641, an anti-trophoblast glycoprotein (5T4 antigen) antibody, which carries pyrrolobenzodiazepine as a “payload”, a highly cytotoxic, sequence-selective DNA minor-groove binding agent with a crosslinking activity, efficiently depletes CSCs, a tumor cell fraction with an anticipated contribution to the origin of post-surgical local recurrences.
  7. 7.
    Finkel KA, Warner KA, Kerk S, Bradford CR, McLean SA, Prince ME, et al. IL-6 inhibition with MEDI5117 decreases the fraction of head and neck cancer stem cells and prevents tumor recurrence. Neoplasia. 2016;18(5):273–81. doi: 10.1016/j.neo.2016.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Acasigua GA, Warner KA, Nor F, Helman J, Pearson AT, Fossati AC, et al. BH3-mimetic small molecule inhibits the growth and recurrence of adenoid cystic carcinoma. Oral Oncol. 2015;51(9):839–47. doi: 10.1016/j.oraloncology.2015.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin CJ, Grandis JR, Carey TE, Gollin SM, Whiteside TL, Koch WM, et al. Head and neck squamous cell carcinoma cell lines: established models and rationale for selection. Head & neck. 2007;29(2):163–88.CrossRefGoogle Scholar
  10. 10.
    Owen JH, Graham MP, Chinn SB, Darr OF, Chepeha DB, Wolf GT, et al. Novel method of cell line establishment utilizing fluorescence-activated cell sorting resulting in 6 new head and neck squamous cell carcinoma lines. Head & neck. 2016;38(Suppl 1):E459–67. doi: 10.1002/hed.24019.CrossRefGoogle Scholar
  11. 11.
    Fadlullah MZ, Chiang IK, Dionne KR, Yee PS, Gan CP, Sam KK, et al. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget. 2016;7(19):27802–18. doi: 10.18632/oncotarget.8533.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoover AC, Spanos WC, Harris GF, Anderson ME, Klingelhutz AJ, Lee JH. The role of human papillomavirus 16 E6 in anchorage-independent and invasive growth of mouse tonsil epithelium. Archives of otolaryngology--head & neck surgery. 2007;133(5):495–502. doi: 10.1001/archotol.133.5.495.CrossRefGoogle Scholar
  13. 13.
    Judd NP, Winkler AE, Murillo-Sauca O, Brotman JJ, Law JH, Lewis Jr JS, et al. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness. Cancer Res. 2012;72(1):365–74. doi: 10.1158/0008-5472.CAN-11-1831.CrossRefPubMedGoogle Scholar
  14. 14.
    Thomas GR, Chen Z, Oechsli MN, Hendler FJ, Van Waes C. Decreased expression of CD80 is a marker for increased tumorigenicity in a new murine model of oral squamous-cell carcinoma. International journal of cancer Journal international du cancer. 1999;82(3):377–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12(2):e1001786. doi: 10.1371/journal.pmed.1001786.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bystrykh LV, Belderbos ME. Clonal analysis of cells with cellular barcoding: when numbers and sizes matter. Methods Mol Biol. 2016;1516:57–89. doi: 10.1007/7651_2016_343.CrossRefPubMedGoogle Scholar
  17. 17.
    Markwell SM, Weed SA. Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers. 2015;7(1):382–406. doi: 10.3390/cancers7010382.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pearson AT, Jackson TL, Nor JE. Modeling head and neck cancer stem cell-mediated tumorigenesis. Cellular and molecular life sciences : CMLS. 2016;73(17):3279–89. doi: 10.1007/s00018-016-2226-x.CrossRefPubMedGoogle Scholar
  19. 19.
    Simple M, Suresh A, Das D, Kuriakose MA. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol. 2015;51(7):643–51. doi: 10.1016/j.oraloncology.2015.04.006.CrossRefPubMedGoogle Scholar
  20. 20.
    Ritchie KE, Nor JE. Perivascular stem cell niche in head and neck cancer. Cancer Lett. 2013;338(1):41–6. doi: 10.1016/j.canlet.2012.07.025.CrossRefPubMedGoogle Scholar
  21. 21.
    Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating Stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38. doi: 10.1016/j.stem.2015.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Baddour Jr HM, Magliocca KR, Chen AY. The importance of margins in head and neck cancer. J Surg Oncol. 2016;113(3):248–55. doi: 10.1002/jso.24134.CrossRefPubMedGoogle Scholar
  23. 23.
    Smits RW, Koljenovic S, Hardillo JA, Ten Hove I, Meeuwis CA, Sewnaik A, et al. Resection margins in oral cancer surgery: room for improvement. Head & neck. 2016;38(Suppl 1):E2197–203. doi: 10.1002/hed.24075.CrossRefGoogle Scholar
  24. 24.
    Upile T, Fisher C, Jerjes W, El Maaytah M, Searle A, Archer D, et al. Resection margins in oral cancer surgery: room for improvement r. Oral Oncol. 2007;43(4):321–6. doi: 10.1016/j.oraloncology.2006.08.002.CrossRefPubMedGoogle Scholar
  25. 25.
    • Iqbal H, Pan Q. Image guided surgery in the management of head and neck cancer. Oral Oncol. 2016;57:32–9. doi: 10.1016/j.oraloncology.2016.04.007. This article reviews the current state of intraoperative fluorescent imaging reagents and technologies in head and neck cancer image-guided surgery.
  26. 26.
    Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666–72. doi: 10.1200/JCO.2005.04.8306.CrossRefPubMedGoogle Scholar
  27. 27.
    van Driel PB, van der Vorst JR, Verbeek FP, Oliveira S, Snoeks TJ, Keereweer S, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. International journal of cancer Journal international du cancer. 2014;134(11):2663–73. doi: 10.1002/ijc.28601.CrossRefPubMedGoogle Scholar
  28. 28.
    • Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL. Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol. 2012;19(12):3879–87. doi: 10.1245/s10434-012-2435-y. This pre-clinical study demonstrates advantages of Panitumumab, a fully humanized EGFR antibody, conjugated with a NIR fluorescent dye IRDye800CW for image-guided surgery using an FDA-approved intraoperative imaging system and for the detection of microscopic residual disease in tissue specimens.
  29. 29.
    •• Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of Cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(16):3658–66. doi: 10.1158/1078-0432.CCR-14-3284. In this article, Rosenthal and colleagues describe a first in-human dose escalation study in a small cohort of HNSCC patients using intravenous administration of a cetuximab-IRDye800 conjugate. A combination of wide-field and closed-field NIR imaging systems for intraoperative, real-time delineation of tumor margins and ex vivo analysis of freshly-processed tissue sections using the fluorescently labeled, tumor cell specific therapeutic antibodies holds great promise for routine clinical application to increase the precision of surgical procedure preventing over- or under-resections.
  30. 30.
    •• de Boer E, Warram JM, Tucker MD, Hartman YE, Moore LS, de Jong JS, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled Cetuximab in squamous cell carcinomas. Scientific reports. 2015;5:10169. doi: 10.1038/srep10169. In the first in-human study of a systemically administered cetuximab-IRDye800CW conjugate, de Boer and colleagues established an in vivo fluorescence immunohistochemistry, an intraoperative fluorescence guided analysis of frozen sections, to help surgeons to accurately delineate the border between head and neck tumor and adjacent normal tissue.
  31. 31.
    • Muhanna N, Cui L, Chan H, Burgess L, Jin CS, MacDonald TD, et al. Multimodal image-guided surgical and photodynamic interventions in head and neck cancer: from primary tumor to metastatic drainage. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016;22(4):961–70. doi: 10.1158/1078-0432.CCR-15-1235. In this study, biocompatible copper-64 labeled porphyrin lipoprotein-mimicking nanoparticles were successfully tested for PET, intraoperative fluorescence imaging and laser light-induced photodynamic anti-tumor intervention in a pre-clinical model of rabbit buccal cavity cancer demonstrating no toxicity and high efficiency as imaging and therapeutic agents.
  32. 32.
    Marchal S, Dolivet G, Lassalle HP, Guillemin F, Bezdetnaya L. Targeted photodynamic therapy in head and neck squamous cell carcinoma: heading into the future. Lasers Med Sci. 2015;30(9):2381–7. doi: 10.1007/s10103-014-1703-4.CrossRefPubMedGoogle Scholar
  33. 33.
    Ahn PH, Quon H, O'Malley BW, Weinstein G, Chalian A, Malloy K, et al. Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol. 2016;55:37–42. doi: 10.1016/j.oraloncology.2016.01.013.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rigual NR, Shafirstein G, Frustino J, Seshadri M, Cooper M, Wilding G, et al. Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA otolaryngology-- head & neck surgery. 2013;139(7):706–11. doi: 10.1001/jamaoto.2013.3387.CrossRefGoogle Scholar
  35. 35.
    Klinghammer K, Raguse JD, Plath T, Albers AE, Joehrens K, Zakarneh A, et al. A comprehensively characterized large panel of head and neck cancer patient-derived xenografts identifies the mTOR inhibitor everolimus as potential new treatment option. International journal of cancer Journal international du cancer. 2015;136(12):2940–8. doi: 10.1002/ijc.29344.CrossRefPubMedGoogle Scholar
  36. 36.
    Peng S, Creighton CJ, Zhang Y, Sen B, Mazumdar T, Myers JN, et al. Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers. J Transl Med. 2013;11:198. doi: 10.1186/1479-5876-11-198.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    •• Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016;35(3):290–300. doi: 10.1038/onc.2015.94. In this publication, Morton and colleagues presented a revolutionary approach for generation of HNSCC PDX-engrafted mice (XactMice) by reconstitution of human immune system and tumor stromal compartment using ex vivo expanded, cord blood-derived human hematopoietic stem and progenitor cells (HSPCs). In this humanized NSGTM mice, human cells originating in the engrafted bone marrow express CD45, a human hematopoietic cell surface marker of B-cells, T- cells, and hematopoietic progenitors, and CD151, a mesenchymal cell associated protein, and contribute to the development of stroma and lymphoangiogenesis in PDX tumors.
  38. 38.
    Strome M, Stein J, Esclamado R, Hicks D, Lorenz RR, Braun W, et al. Laryngeal transplantation and 40-month follow-up. N Engl J Med. 2001;344(22):1676–9. doi: 10.1056/nejm200105313442204.CrossRefPubMedGoogle Scholar
  39. 39.
    Lott DG. What is the future of 'organ transplantation' in the head and neck? Current opinion in otolaryngology & head and neck surgery. 2014;22(5):429–35. doi: 10.1097/moo.0000000000000087.CrossRefGoogle Scholar
  40. 40.
    Shanmugarajah K, Hettiaratchy S, Butler PE. Facial transplantation. Current opinion in otolaryngology & head and neck surgery. 2012;20(4):291–7. doi: 10.1097/MOO.0b013e3283552cc5.CrossRefGoogle Scholar
  41. 41.
    Shanmugarajah K, Hettiaratchy S, Clarke A, Butler PE. Clinical outcomes of facial transplantation: a review. International journal of surgery (London, England). 2011;9(8):600–7. doi: 10.1016/j.ijsu.2011.09.005.CrossRefGoogle Scholar
  42. 42.
    Lott DG, Dan O, Lu L, Strome M. Long-term laryngeal allograft survival using low-dose everolimus. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2010;142(1):72–8. doi: 10.1016/j.otohns.2009.10.019.CrossRefGoogle Scholar
  43. 43.
    Lott DG, Russell JO, Khariwala SS, Dan O, Strome M. Ten-month laryngeal allograft survival with use of pulsed everolimus and anti-alphabeta T-cell receptor antibody immunosuppression. The Annals of otology, rhinology, and laryngology. 2011;120(2):131–6. doi: 10.1177/000348941112000210.CrossRefPubMedGoogle Scholar
  44. 44.
    Lott DG, Dan O, Lu L, Strome M. Decoy NF-kappaB fortified immature dendritic cells maintain laryngeal allograft integrity and provide enhancement of regulatory T cells. Laryngoscope. 2010;120(1):44–52. doi: 10.1002/lary.20667.PubMedGoogle Scholar
  45. 45.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet (London, England). 2008;372(9655):2023–30. doi: 10.1016/s0140-6736(08)61598-6.CrossRefGoogle Scholar
  46. 46.
    Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010;362(2):138–45. doi: 10.1056/NEJMoa0810653.CrossRefPubMedGoogle Scholar
  47. 47.
    Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozoky B, Crowley C, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet (London, England). 2011;378(9808):1997–2004. doi: 10.1016/s0140-6736(11)61715-7.CrossRefGoogle Scholar
  48. 48.
    Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C, et al. Development of bioengineered human larynx. Biomaterials. 2011;32(19):4433–42. doi: 10.1016/j.biomaterials.2011.02.055.CrossRefPubMedGoogle Scholar
  49. 49.
    Rana M, Essig H, Eckardt AM, Tavassol F, Ruecker M, Schramm A, et al. Advances and innovations in computer-assisted head and neck oncologic surgery. The Journal of craniofacial surgery. 2012;23(1):272–8. doi: 10.1097/SCS.0b013e318241bac7.CrossRefPubMedGoogle Scholar
  50. 50.
    Shaw RJ, Holsinger FC, Paleri V, Evans M, Tudur-Smith C, Ferris RL. Surgical trials in head and neck oncology: renaissance and revolution? Head & neck. 2015;37(7):927–30. doi: 10.1002/hed.23846.CrossRefGoogle Scholar
  51. 51.
    Evrard S, McKelvie-Sebileau P, van de Velde C, Nordlinger B, Poston G. What can we learn from oncology surgical trials? Nat Rev Clin Oncol. 2016;13(1):55–62. doi: 10.1038/nrclinonc.2015.176.CrossRefPubMedGoogle Scholar
  52. 52.
    Devaiah A, Murchison C. Analysis of 473 US head and neck cancer trials (1996-2014): trends, gaps, and opportunities. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2016;154(2):309–14. doi: 10.1177/0194599815617723.CrossRefGoogle Scholar
  53. 53.
    Schmitz S, Duhoux F, Machiels JP. Window of opportunity studies: do they fulfil our expectations? Cancer Treat Rev. 2016;43:50–7. doi: 10.1016/j.ctrv.2015.12.005.CrossRefPubMedGoogle Scholar
  54. 54.
    Schmitz S, Hamoir M, Reychler H, Magremanne M, Weynand B, Lhommel R, et al. Tumour response and safety of cetuximab in a window pre-operative study in patients with squamous cell carcinoma of the head and neck. Annals of oncology : official journal of the European Society for Medical Oncology. 2013;24(9):2261–6. doi: 10.1093/annonc/mdt180.CrossRefGoogle Scholar
  55. 55.
    Thomas F, Rochaix P, Benlyazid A, Sarini J, Rives M, Lefebvre JL, et al. Pilot study of neoadjuvant treatment with erlotinib in nonmetastatic head and neck squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(23):7086–92. doi: 10.1158/1078-0432.ccr-07-1370.CrossRefGoogle Scholar
  56. 56.
    Del Campo JM, Hitt R, Sebastian P, Carracedo C, Lokanatha D, Bourhis J, et al. Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br J Cancer. 2011;105(5):618–27. doi: 10.1038/bjc.2011.237.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gross ND, Bauman JE, Gooding WE, Denq W, Thomas SM, Wang L, et al. Erlotinib, erlotinib-sulindac versus placebo: a randomized, double-blind, placebo-controlled window trial in operable head and neck cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(12):3289–98. doi: 10.1158/1078-0432.ccr-13-3360.CrossRefGoogle Scholar
  58. 58.
    • Glass GE, Mosahebi A, Shakib K. Cross-specialty developments: a summary of the mutually relevant recent literature from the journal of plastic, reconstructive and aesthetic surgery. Br J Oral Maxillofac Surg. 2016;54(1):13–21. doi: 10.1016/j.bjoms.2015.08.272. This review summarizes recent publications in the field of head and neck and facial reconstructive and aesthetic surgery including flap techniques after oncologic surgery.
  59. 59.
    • Miller MQ, Dighe A, Cui Q, Park SS, Christophel JJ. Regenerative medicine in facial plastic and reconstructive surgery: a review. JAMA facial plastic surgery. 2016;18(5):391–4. doi: 10.1001/jamafacial.2016.0913. This recent review summarizes advances in facial plastic and reconstructive surgery including the application of stem cells, growth factors, platelet-rich plasma, and synthetic scaffolds.
  60. 60.
    • Markey J, Knott PD, Fritz MA, Seth R. Recent advances in head and neck free tissue transfer. Current opinion in otolaryngology & head and neck surgery. 2015;23(4):297–301. doi: 10.1097/MOO.0000000000000169. This article discusses recent progress in techniques of head and neck free tissue transfer.
  61. 61.
    • Ward MC, Koyfman SA. Transoral robotic surgery: the radiation oncologist’s perspective. Oral Oncol. 2016;60:96–102. doi: 10.1016/j.oraloncology.2016.07.008. This review article discusses current issues and open questions in the integration of TORS with IMRT and optimal selection of patients who will most likely benefit from the single or combination modalities.
  62. 62.
    Schmitt NC, Duvvuri U. Transoral robotic surgery for oropharyngeal squamous cell carcinoma. Current opinion in otolaryngology & head and neck surgery. 2015;23(2):127–31. doi: 10.1097/MOO.0000000000000136.CrossRefGoogle Scholar
  63. 63.
    Mendelsohn AH, Remacle M. Transoral robotic surgery for laryngeal cancer. Current opinion in otolaryngology & head and neck surgery. 2015;23(2):148–52. doi: 10.1097/MOO.0000000000000144.CrossRefGoogle Scholar
  64. 64.
    Tateya I, Shiotani A, Satou Y, Tomifuji M, Morita S, Muto M, et al. Transoral surgery for laryngo-pharyngeal cancer—the paradigm shift of the head and cancer treatment. Auris Nasus Larynx. 2016;43(1):21–32. doi: 10.1016/j.anl.2015.06.013.CrossRefPubMedGoogle Scholar
  65. 65.
    •• Holsinger FC, Ferris RL. Transoral endoscopic head and neck surgery and its role within the multidisciplinary treatment paradigm of oropharynx cancer: robotics, lasers, and clinical trials. J Clin Oncol. 2015;33(29):3285–92. doi: 10.1200/JCO.2015.62.3157. This article reviews recent technological advances in transoral endoscopic head and neck surgery and discusses ongoing clinical trials aiming to evaluate the selection of TORS as a primary treatment modality for patients with oropharyngeal cancer.
  66. 66.
    Owadally W, Hurt C, Timmins H, Parsons E, Townsend S, Patterson J, et al. PATHOS: a phase II/III trial of risk-stratified, reduced intensity adjuvant treatment in patients undergoing transoral surgery for Human papillomavirus (HPV) positive oropharyngeal cancer. BMC Cancer. 2015;15:602. doi: 10.1186/s12885-015-1598-x.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nichols AC, Yoo J, Hammond JA, Fung K, Winquist E, Read N, et al. Early-stage squamous cell carcinoma of the oropharynx: radiotherapy vs. trans-oral robotic surgery (ORATOR)—study protocol for a randomized phase II trial. BMC Cancer. 2013;13:133. doi: 10.1186/1471-2407-13-133.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ferris RL, Blumenschein Jr G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67. doi: 10.1056/NEJMoa1602252.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim KY, McShane LM, Conley BA. Designing biomarker studies for head and neck cancer. Head & neck. 2014;36(7):1069–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Service d’Oto-rhino-laryngologie – Chirurgie cervico-facialeCentre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL)LausanneSwitzerland

Personalised recommendations