Advertisement

Gene Expression Signatures for Head and Neck Cancer Patient Stratification: Are Results Ready for Clinical Application?

  • Luca Tonella
  • Marco Giannoccaro
  • Salvatore Alfieri
  • Silvana CanevariEmail author
  • Loris De CeccoEmail author
Head and Neck Cancer (L Licitra, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Head and Neck Cancer

Opinion statement

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by incidence worldwide and considering the recent EUROCARE-5 population-based study the 5-year survival rate of HNSCC patients in Europe ranges between 69% in localized cases and 34% in patients with regional involvement. The development of high-throughput gene expression assays in the last two decades has provided the invaluable opportunity to improve our knowledge on cancer biology and to identify predictive signatures in the most deeply analyzed malignancies, such as hematological and breast cancers. At variance, till 2010, the number of reliable reports referring gene expression data related to HSNCC biology and prediction was quite limited. A critical revision of the literature reporting gene expression data in HNSCC indicated that in the last 6 years, there were new important studies with a relevant increase in the sample size and a more accurate selection of cases, the publication of a growing number of studies applying a computational integration (meta-analysis) of different microarray datasets addressing similar clinical/biological questions, the increased use of molecular sub-classification of tumors according to their gene expression, and the release of the publicly available largest dataset in HNSCC by The Cancer Genome Atlas (TCGA) consortium. Overall, also for this disease, it become evident that the expression analysis of the entire transcriptome has been enabling to achieve the identification of promising molecular signatures for (i) disclosure of the biology behind carcinogenesis with special focus on the HPV-related one, (ii) prediction of tumor recurrence or metastasis development, (iii) identification of subgroups of tumors with different biology and associated prognosis, and (iv) prediction of outcome and/or response to therapy. The increasing awareness of the relevance of strict collaboration among clinicians and translational researchers would in a near future enable the application of a personalized HNSCCs patients’ treatment in the clinical practice based also on gene expression signatures.

Keywords

HNSCC Gene expression Microarray RNA-seq Meta-analysis-subtype stratification Therapy prediction 

Notes

Acknowledgements

We are grateful to Drs Paolo Bossi e MariaLuisa Sensi for their critical reading of the manuscript and their helpful comments. We would like also to thank all the cited authors for their informative papers that enabled us to organize this review and we apologize for potential missing citations. This work was partially supported by Associazione Italiana Ricerca Cancro (AIRC IG 14750 to SC and AIRC IG 18519 to LDC) and by H2020-EU.3.1. - SOCIETAL CHALLENGES - Health, demographic change and well-being (“BD2Decide; Big Data and models for personalized Head and Neck Cancer Decision support” Project ID: 689715).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gatta G, Botta L, Sánchez MJ, Anderson LA, Pierannunzio D, Licitra L. EUROCARE Working Group. Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5 population-based study. Eur J Cancer. 2015.Google Scholar
  2. 2.
    Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133(9):2013–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Macgregor PF, Squire JA. Application of microarrays to the analysis of gene expression in cancer. Clin Chem. 2002;48(8):1170–7.PubMedGoogle Scholar
  5. 5.
    Colombo PE, Milanezi F, Weigelt B, Reis-Filho JS. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res. 2011;13(3):212.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-seq data. Sci Rep. 2016;6:21597.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9(1):e78644.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lallemant B, Evrard A, Chambon G, Sabra O, Kacha S, Lallemant JG, Lumbroso S, Brouillet JP. Gene expression profiling in head and neck squamous cell carcinoma: clinical perspectives. Head Neck. 2010;32(12):1712–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 2008;5(9):e184.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    •• Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82. doi: 10.1038/nature14129. This represents the larger study conducted in HNSCC in terms of number of cases and “omics” methods analyzedCrossRefGoogle Scholar
  13. 13.
    Dobbin KK, Simon RM. Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics. 2007;8(1):101–17.CrossRefPubMedGoogle Scholar
  14. 14.
    Cromer A, Carles A, Millon R, Ganguli G, Chalmel F, Lemaire F, Young J, Dembélé D, Thibault C, Muller D, Poch O, Abecassis J, Wasylyk B. Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis. Oncogene. 2004;23(14):2484–98.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuriakose MA, Chen WT, He ZM, Sikora AG, Zhang P, Zhang ZY, Qiu WL, Hsu DF, McMunn-Coffran C, Brown SM, Elango EM, Delacure MD, Chen FA. Selection and validation of differentially expressed genes in head and neck cancer. Cell Mol Life Sci. 2004;61(11):1372–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Dysvik B, Vasstrand EN, Løvlie R, Elgindi OA, Kross KW, Aarstad HJ, Johannessen AC, Jonassen I, Ibrahim SO. Gene expression profiles of head and neck carcinomas from Sudanese and Norwegian patients reveal common biological pathways regardless of race and lifestyle. Clin Cancer Res. 2006;12(4):1109–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Kondoh N, Ohkura S, Arai M, Hada A, Ishikawa T, Yamazaki Y, Shindoh M, Takahashi M, Kitagawa Y, Matsubara O, Yamamoto M. Gene expression signatures that can discriminate oral leukoplakia subtypes and squamous cell carcinoma. Oral Oncol. 2007;43(5):455–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, Mao L, Wong DT, Zhou X. Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics. 2008;9:69.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen C, Méndez E, Houck J, Fan W, Lohavanichbutr P, Doody D, Yueh B, Futran ND, Upton M, Farwell DG, Schwartz SM, Zhao LP. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2008;17(8):2152–62.CrossRefGoogle Scholar
  20. 20.
    Estilo CL, O-charoenrat P, Talbot S, Socci ND, Carlson DL, Ghossein R, Williams T, Yonekawa Y, Ramanathan Y, Boyle JO, Kraus DH, Patel S, Shaha AR, Wong RJ, Huryn JM, Shah JP, Singh B. Oral tongue cancer gene expression profiling: identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009;9:11.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saleh A, Zain RB, Hussaini H, Ng F, Tanavde V, Hamid S, Chow AT, Lim GS, Abraham MT, Teo SH, Cheong SC. Transcriptional profiling of oral squamous cell carcinoma using formalin-fixed paraffin-embedded samples. Oral Oncol. 2010;46(5):379–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Saintigny P, Zhang L, Fan YH, El-Naggar AK, Papadimitrakopoulou VA, Feng L, Lee JJ, Kim ES, Ki Hong W, Mao L. Gene expression profiling predicts the development of oral cancer. Cancer Prev Res (Phila). 2011;4(2):218–29.CrossRefGoogle Scholar
  23. 23.
    Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D, Liu Y, Loyo M, Agrawal N, Howard J, Li R, Ahn S, Fertig E, Sidransky D, Houghton J, Buddavarapu K, Sanford T, Choudhary A, Darden W, Adai A, Latham G, Bishop J, Sharma R, Westra WH, Hennessey P, Chung CH, Califano JA. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 2014;74(4):1091–104.CrossRefPubMedGoogle Scholar
  24. 24.
    Masterson L, Sorgeloos F, Winder D, Lechner M, Marker A, Malhotra S, Sudhoff H, Jani P, Goon P, Sterling J. Deregulation of SYCP2 predicts early stage human papillomavirus-positive oropharyngeal carcinoma: a prospective whole transcriptome analysis. Cancer Sci. 2015;106(11):1568–75.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yan L, Zhan C, Wu J, Wang S. Expression profile analysis of head and neck squamous cell carcinomas using data from the cancer genome atlas. Mol Med Rep. 2016;13(5):4259–65.PubMedPubMedCentralGoogle Scholar
  26. 26.
    • Slebos RJ, Yi Y, Ely K, Carter J, Evjen A, Zhang X, Shyr Y, Murphy BM, Cmelak AJ, Burkey BB, Netterville JL, Levy S, Yarbrough WG, Chung CH. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3):701–9. First signature able to stratify patients based on HPV statusCrossRefPubMedGoogle Scholar
  27. 27.
    Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, Woodworth CD, Connor JP, Haugen TH, Smith EM, Kelsey KT, Turek LP, Ahlquist P. Fundamental differences in cell cycles deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancer. Cancer Res. 2007;67(10):4605–19.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schlecht NF, Burk RD, Adrien L, Dunne A, Kawachi N, Sarta C, Chen Q, Brandwein-Gensler M, Prystowsky MB, Childs G, Smith RV, Belbin TJ. Gene expression profiles in HPV-infected head and neck cancer. J Pathol. 2007;213(3):283–93.CrossRefPubMedGoogle Scholar
  29. 29.
    Lohavanichbutr P, Houck J, Fan W, Yueh B, Mendez E, Futran N, Doody DR, Upton MP, Farwell DG, Schwartz SM, Zhao LP, Chen C. Genomewide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer: potential implications for treatment choices. Arch Otolaryngol Head Neck Surg. 2009;135(2):180–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wichmann G, Rosolowski M, Krohn K, Kreuz M, Boehm A, Reiche A, Scharrer U, Halama D, Bertolini J, Bauer U, Holzinger D, Pawlita M, Hess J, Engel C, Hasenclever D, Scholz M, Ahnert P, Kirsten H, Hemprich A, Wittekind C, Herbarth O, Horn F, Dietz A, Loeffler M, Leipzig Head and Neck Group (LHNG). The role of HPV RNA transcription, immune response-related gene expression and disruptive TP53 mutations in diagnostic and prognostic profiling of head and neck cancer. Int J Cancer. 2015;137(12):2846–57.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Koneva LA, Virani S, Arthur AE, Virani A, Hall PB, Warden CD, Carey TE, Chepeha DB, Prince ME, McHugh JB, Wolf GT, Rozek LS, Sartor MA. Subtypes of HPV-positive head and neck cancers are associated with HPV characteristics, copy number alterations, PIK3CA mutation, and pathway signatures. Clin Cancer Res. 2016;22(18):4735–45.CrossRefPubMedGoogle Scholar
  32. 32.
    • Zhang W, Edwards A, Fang Z, Flemington EK, Zhang K. Integrative genomics and transcriptomics analysis reveals potential mechanisms for favorable prognosis of patients with HPV-positive head and neck carcinomas. Scientific Reports. 2016;6:24927. Exploiting data from TCGA, the authors elucidated the biology of HPV positive HNSCCCrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu Z, Niu Y, Li C, Yang Y, Gao C. Integrating multiple microarray datasets on oral squamous cell carcinoma to reveal dysregulated networks. Head Neck. 2012;34(12):1789–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang X, Regan K, Huang Y, Zhang Q, Li J, Seiwert TY, Cohen EE, Xing HR, Lussier YA. Single sample expression-anchored mechanisms predict survival in head and neck cancer. PLoS Comput Biol. 2012;8(1):e1002350.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    • Sun Y, Sang Z, Jiang Q, Ding X, Yu Y. Transcriptomic characterization of differential gene expression in oral squamous cell carcinoma: a meta-analysis of publicly available microarray data sets. Tumour Biol. 2016 4. Meta-analysis to define potential diagnostic biomarkers and therapeutic targets for OSCC.Google Scholar
  36. 36.
    Reis PP, Waldron L, Perez-Ordonez B, Pintilie M, Galloni NN, Xuan Y, Cervigne NK, Warner GC, Makitie AA, Simpson C, Goldstein D, Brown D, Gilbert R, Gullane P, Irish J, Jurisica I, Kamel-Reid S. A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC Cancer. 2011;11:437.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Buffa FM, Harris AL, West CM, Miller CJ. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer. 2010;102(2):428–35.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    •• De Cecco L, Bossi P, Locati L, Canevari S, Licitra L. Comprehensive gene expression meta-analysis of head and neck squamous cell carcinoma microarray data defines a robust survival predictor. Ann Oncol. 2014;25(8):1628–35. Based on meta-analysis approach a prognostic signature was developed and compared to other gene-expression modelsCrossRefPubMedGoogle Scholar
  39. 39.
    Reddy RB, Bhat AR, James BL, Govindan SV, Mathew R, Ravindra DR, Hedne N, Illiayaraja J, Kekatpure V, Khora SS, Hicks W, Tata P, Kuriakose MA, Suresh A. Meta-analyses of microarray datasets identifies ANO1 and FADD as prognostic markers of head and neck cancer. PLoS One. 2016;11(1):e0147409.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM. Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res. 2004;64(1):55–63.CrossRefPubMedGoogle Scholar
  41. 41.
    Schmalbach CE, Chepeha DB, Giordano TJ, Rubin MA, Teknos TN, Bradford CR, Wolf GT, Kuick R, Misek DE, Trask DK, Hanash S. Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(3):295–302.CrossRefPubMedGoogle Scholar
  42. 42.
    Warner GC, Reis PP, Jurisica I, Sultan M, Arora S, Macmillan C, Makitie AA, Grénman R, Reid N, Sukhai M, Freeman J, Gullane P, Irish J, Kamel-Reid S. Molecular classification of oral cancer by cDNA microarrays identifies overexpressed genes correlated with nodal metastasis. Int J Cancer. 2004;110(6):857–68.CrossRefPubMedGoogle Scholar
  43. 43.
    Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P, Tilanus MG, Koole R, Hordijk GJ, van der Vliet PC, Reinders MJ, Slootweg PJ, Holstege FC. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet. 2005;37(2):182–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Roepman P, Kemmeren P, Wessels LF, Slootweg PJ, Holstege FC. Multiple robust signatures for detecting lymph node metastasis in head and neck cancer. Cancer Res. 2006;66(4):2361–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Carinci F, Arcelli D, Lo Muzio L, Francioso F, Valentini D, Evangelisti R, Volinia S, D'Angelo A, Meroni G, Zollo M, Pastore A, Ionna F, Mastrangelo F, Conti P, Tetè S. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl Res. 2007;150(4):233–45.CrossRefPubMedGoogle Scholar
  46. 46.
    Nguyen ST, Hasegawa S, Tsuda H, Tomioka H, Ushijima M, Noda M, Omura K, Miki Y. Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Sci. 2007;98(5):740–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Colella S, Richards KL, Bachinski LL, Baggerly KA, Tsavachidis S, Lang JC, Schuller DE, Krahe R. Molecular signatures of metastasis in head and neck cancer. Head Neck. 2008;30(10):1273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hensen EF, De Herdt MJ, Goeman JJ, Oosting J, Smit VT, Cornelisse CJ, Baatenburg de Jong RJ. Gene-expression of metastasized versus non-metastasized primary head and neck squamous cell carcinomas: a pathway-based analysis. BMC Cancer. 2008;8:168.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rickman DS, Millon R, De Reynies A, Thomas E, Wasylyk C, Muller D, Abecassis J, Wasylyk B. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. Oncogene. 2008;27(51):6607–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Colo AE, Simoes AC, Carvalho AL, Melo CM, Fahham L, Kowalski LP, Soares FA, Neves EJ, Reis LF, Carvalho AF. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma. BMC Med Genet. 2011;4:33.Google Scholar
  51. 51.
    Van Hooff SR, Leusink FK, Roepman P, Baatenburg de Jong RJ, Speel EJ, van den Brekel MW, van Velthuysen ML, van Diest PJ, van Es RJ, Merkx MA, Kummer JA, Leemans CR, Schuuring E, Langendijk JA, Lacko M, De Herdt MJ, Jansen JC, Brakenhoff RH, Slootweg PJ, Takes RP, Holstege FC. Validation of a gene expression signature for assessment of lymph node metastasis in oral squamous cell carcinoma. J Clin Oncol. 2012;30(33):4104–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Jung AC, Job S, Ledrappier S, Macabre C, Abecassis J, de Reyniès A, Wasylyk B. A poor prognosis subtype of HNSCC is consistently observed across methylome, transcriptome, and miRNome analysis. Clin Cancer Res. 2013;19(15):4174–84.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang W, Lim WK, Leong HS, Chong FT, Lim TK, Tan DS, Teh BT, Iyer NG. An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases. Oral Oncol. 2015;51(4):355–62.CrossRefPubMedGoogle Scholar
  54. 54.
    •• Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, Shockley WW, Weissler MC, Dressler LG, Shores CG, Yarbrough WG, Perou CM. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5(5):489–500. First study that clearly identified subtypes in HNSCC. The main features of this stratification including clusters related to xenobiotic exposure and mesenchymal pathway was confirmed in other studiesCrossRefPubMedGoogle Scholar
  55. 55.
    Walter V, Yin X, Wilkerson MD, Cabanski CR, Zhao N, Du Y, Ang MK, Hayward MC, Salazar AH, Hoadley KA, Fritchie K, Sailey CJ, Weissler MC, Shockley WW, Zanation AM, Hackman T, Thorne LB, Funkhouser WD, Muldrew KL, Olshan AF, Randell SH, Wright FA, Shores CG, Hayes DN. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8(2):e56823.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    •• De Cecco L, Nicolau M, Giannoccaro M, Daidone MG, Bossi P, Locati L, Licitra L, Canevari S. Head and neck cancer subtypes with biological and clinical relevance: meta-analysis of gene-expression data. Oncotarget. 2015;6(11):9627–42. This study represents the larger meta-analysis in HNSCC. Six subtypes were identified including immune-related subtypesCrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, Rieke D, Endhardt K, Fang P, Brägelmann J, DeBoer R, El-Dinali M, Aktolga S, Lei Z, Tan P, Rozen SG, Salgia R, Weichselbaum RR, Lingen MW, Story MD, Ang KK, Cohen EE, White KP, Vokes EE, Seiwert TY. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. 2015;21(4):870–81. Based on a large cohort of HPV positive tumors, two subtypes of HPV-positive tumors were foundCrossRefPubMedGoogle Scholar
  58. 58.
    Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Ang KK, El-Naggar AK, Zanation AM, Cmelak AJ, Levy S, Slebos RJ, Yarbrough WG. Gene expression profiles identify epithelial-to-mesenchymal transition andactivation of nuclear factor -kappaB signaling as characteristics of a high-riskhead and neck squamous cell carcinoma. Cancer Res. 2006;66(16):8210–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Ganly I, Talbot S, Carlson D, Viale A, Maghami E, Osman I, Sherman E, Pfister D, Chuai S, Shaha AR, Kraus D, Shah JP, Socci ND, Singh B. Identification of angiogenesis/metastases genes predicting chemoradiotherapy response in patients with laryngopharyngeal carcinoma. J Clin Oncol. 2007;25(11):1369–76.CrossRefPubMedGoogle Scholar
  60. 60.
    Pramana J, Van den Brekel MW, van Velthuysen ML, Wessels LF, Nuyten DS, Hofland I, Atsma D, Pimentel N, Hoebers FJ, Rasch CR, Begg AC. Gene expression profiling to predict outcome after chemoradiation in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69(5):1544–52.CrossRefPubMedGoogle Scholar
  61. 61.
    Méndez E, Houck JR, Doody DR, Fan W, Lohavanichbutr P, Rue TC, Yueh B, Futran ND, Upton MP, Farwell DG, Heagerty PJ, Zhao LP, Schwartz SM, Chen C. A genetic expression profile associated with oral cancer identifies a group of patients at high risk of poor survival. Clin Cancer Res. 2009;15(4):1353–61.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    de Jong MC, Pramana J, Knegjens JL, Balm AJ, van den Brekel MW, Hauptmann M, Begg AC, Rasch CR. HPV and high-risk gene expression profiles predict response to chemoradiotherapy in head and neck cancer, independent of clinical factors. Radiother Oncol. 2010;95(3):365–70.CrossRefPubMedGoogle Scholar
  63. 63.
    Thurlow JK, Peña Murillo CL, Hunter KD, Buffa FM, Patiar S, Betts G, West CM, Harris AL, Parkinson EK, Harrison PR, Ozanne BW, Partridge M, Kalna G. Spectral clustering of microarray data elucidates the roles of microenvironment remodeling and immune responses in survival of head and neck squamous cell carcinoma. J Clin Oncol. 2010;28(17):2881–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Fountzilas E, Markou K, Vlachtsis K, Nikolaou A, Arapantoni-Dadioti P, Ntoula E, Tassopoulos G, Bobos M, Konstantinopoulos P, Fountzilas G, Spentzos D. Identification and validation of gene expression models that predict clinical outcome in patients with early-stage laryngeal cancer. Ann Oncol. 2012;23(8):2146–53.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pavón MA, Parreño M, Téllez-Gabriel M, Sancho FJ, López M, Céspedes MV, Casanova I, Lopez-Pousa A, Mangues MA, Quer M, Barnadas A, León X, Mangues R. Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma. Carcinogenesis. 2012;33(9):1707–16.CrossRefPubMedGoogle Scholar
  66. 66.
    Rong SN, Xiaohui S, Xiaoyun Q, Chenjie Y, Haiyan W, Xia G. Detection of differentially expressed genes and association with clinicopathological features in laryngeal squamous cell carcinoma. Oncol Lett. 2012;4(6):1354–60.Google Scholar
  67. 67.
    Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D, Fountzilas G. Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One. 2013;8(8):e70429.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lohavanichbutr P, Méndez E, Holsinger FC, Rue TC, Zhang Y, Houck J, Upton MP, Futran N, Schwartz SM, Wang P, Chen C. A 13-gene signature prognostic of HPV-negative OSCC: discovery and external validation. Clin Cancer Res. 2013;19(5):1197–203.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    • Winter SC, Buffa FM, Silva P, Miller C, Valentine HR, Turley H, Shah KA, Cox GJ, Corbridge RJ, Homer JJ, Musgrove B, Slevin N, Sloan P, Price P, West CM, Harris AL. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 2007;67(7):3441–9. The present work clearly demonstrated the importance of hypoxia signature in the biology of HNSCCCrossRefPubMedGoogle Scholar
  70. 70.
    Tomkiewicz C, Hans S, Mucchielli MH, Agier N, Delacroix H, Marisa L, Brasnu D, Aggerbeck LP, Badoual C, Barouki R, Aggerbeck M. A head and neck cancer tumor response-specific gene signature for cisplatin, 5-fluorouracil induction chemotherapy fails with added taxanes. PLoS One. 2012;7(10):e47170.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chung CH, Lee JW, Slebos RJ, Howard JD, Perez J, Kang H, Fertig EJ, Considine M, Gilbert J, Murphy BA, Nallur S, Paranjape T, Jordan RC, Garcia J, Burtness B, Forastiere AA, Weidhaas JB. A 3'-UTR KRAS-variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2014;25(11):2230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    • Bossi P, Bergamini C, Siano M, Cossu Rocca M, Sponghini AP, Favales F, et al. Functional genomics uncover the biology behind the responsiveness of head and neck squamous cell cancer patients to cetuximab. Clin Cancer Res. 2016;22(15):3961–70. First gene-expression analysis proving the idea those expression predictive signatures may be identified in predicting target therapy responseCrossRefPubMedGoogle Scholar
  73. 73.
    Larsen SR, Johansen J, Sørensen JA, Krogdahl A. The prognostic significance of histological features in oral squamous cell carcinoma. J Oral Pathol Med. 2009;38(8):657–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, Betts GN, Denley H, Miller CJ, Homer JJ, Rojas AM, Hoskin PJ, Buffa FM, Harris AL, Kaanders JH, West CM. A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res. 2013;19(17):4879–88.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Toustrup K, Sørensen BS, Nordsmark M, Busk M, Wiuf C, Alsner J, Overgaard J. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011;71(17):5923–31.CrossRefPubMedGoogle Scholar
  76. 76.
    Toustrup K, Sørensen BS, Lassen P, Wiuf C, Alsner J, Overgaard J, Danish Head and Neck Cancer Group (DAHANCA). Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol. 2012;102(1):122–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Rocha-Lima C, Kelley S, Calvin DP, Yeatman TJ, Begg AC, Torres-Roca JF. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009;75(2):489–96.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.CrossRefPubMedGoogle Scholar
  79. 79.
    Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, Cheng JD, Chow LQ. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.CrossRefPubMedGoogle Scholar
  80. 80.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014. 5.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  2. 2.Head and Neck Medical Oncology UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly

Personalised recommendations