Skip to main content

Advertisement

Log in

Merkel Cell Carcinoma Therapeutic Update

  • Skin Cancer (BY Kwong, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine tumor of the skin. Early-stage disease can be cured with surgical resection and radiotherapy (RT). Sentinel lymph node biopsy (SLNB) is an important staging tool, as a microscopic MCC is frequently identified. Adjuvant RT to the primary excision site and regional lymph node bed may improve locoregional control. However, newer studies confirm that patients with biopsy-negative sentinel lymph nodes may not benefit from regional RT. Advanced MCC currently lacks a highly effective treatment as responses to chemotherapy are not durable. Recent work suggests that immunotherapy targeting the programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) checkpoint holds great promise in treating advanced MCC and may provide durable responses in a portion of patients. At the same time, high-throughput sequencing studies have demonstrated significant differences in the mutational profiles of tumors with and without the Merkel cell polyomavirus (MCV). An important secondary endpoint in the ongoing immunotherapy trials for MCC will be determining if there is a response difference between the virus-positive MCC tumors that typically lack a large mutational burden and the virus-negative tumors that have a large number of somatic mutations and predicted tumor neoantigens. Interestingly, sequencing studies have failed to identify a highly recurrent activated driver pathway in the majority of MCC tumors. This may explain why targeted therapies can demonstrate exceptional responses in case reports but fail when treating all comers with MCC. Ultimately, a precision medicine approach may be more appropriate for treating MCC, where identified driver mutations are used to direct targeted therapies. At a minimum, stratifying patients in future clinical trials based on tumor viral status should be considered as virus-negative tumors are more likely to harbor activating driver mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heath M, Jaimes N, Lemos B, Mostaghimi A, Wang LC, Peñas PF, et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J Am Acad Dermatol. 2008;58(3):375–81. doi:10.1016/j.jaad.2007.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paulson KG, Iyer JG, Blom A, Warton EM, Sokil M, Yelistratova L, et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage. J Invest Dermatol. 2013;133(3):642–6. doi:10.1038/jid.2012.388.

    Article  CAS  PubMed  Google Scholar 

  3. Asgari MM, Sokil MM, Warton EM, Iyer J, Paulson KG, Nghiem P. Effect of host, tumor, diagnostic, and treatment variables on outcomes in a large cohort with Merkel cell carcinoma. JAMA Dermatol. 2014;150(7):716–23. doi:10.1001/jamadermatol.2013.8116. A single-institution study describing a negative prognostic impact of immune compromise and confirming prior observations that nodal MCC with unknown primary has a better prognosis than nodal disease with known primary.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lemos BD, Storer BE, Iyer JG, Phillips JL, Bichakjian CK, Fang LC, et al. Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5823 cases as the basis of the first consensus staging system. J Am Acad Dermatol. 2010;63(5):751–61. doi:10.1016/j.jaad.2010.02.056.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4. doi:10.1245/s10434-010-0985-4.

    Article  PubMed  Google Scholar 

  6. Foote M, Veness M, Zarate D, Poulsen M. Merkel cell carcinoma: the prognostic implications of an occult primary in stage IIIB (nodal) disease. J Am Acad Dermatol. 2012;67(3):395–9. doi:10.1016/j.jaad.2011.09.009.

    Article  PubMed  Google Scholar 

  7. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100. doi:10.1126/science.1152586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fitzgerald TL, Dennis S, Kachare SD, Vohra NA, Wong JH, Zervos EE. Dramatic increase in the incidence and mortality from Merkel cell carcinoma in the United States. Am Surg. 2015;81(8):802–6.

    PubMed  Google Scholar 

  9. Network NCC. Merkel cell carcinoma (version 1.2016). http://www.nccn.org/professionals/physician_gls/PDF/mcc.pdf. Accessed Jan 2016.

  10. Gunaratne DA, Howle JR, Veness MJ. Sentinel lymph node biopsy in Merkel cell carcinoma: a 15 year institutional experience and statistical analysis of 721 reported cases. Br J Dermatol. 2015. doi:10.1111/bjd.14240. This large retrospective review demonstrated no increased recurrence with adjuvant RT in the setting of negative SLNB.

    PubMed  Google Scholar 

  11. Chan JK, Suster S, Wenig BM, Tsang WY, Chan JB, Lau AL. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol. 1997;21(2):226–34.

    Article  CAS  PubMed  Google Scholar 

  12. Allen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol. 2005;23(10):2300–9. doi:10.1200/JCO.2005.02.329.

    Article  PubMed  Google Scholar 

  13. Schwartz JL, Griffith KA, Lowe L, Wong SL, McLean SA, Fullen DR, et al. Features predicting sentinel lymph node positivity in Merkel cell carcinoma. J Clin Oncol. 2011;29(8):1036–41. doi:10.1200/JCO.2010.33.4136.

    Article  PubMed  Google Scholar 

  14. Iyer JG, Storer BE, Paulson KG, Lemos B, Phillips JL, Bichakjian CK, et al. Relationships among primary tumor size, number of involved nodes, and survival for 8044 cases of Merkel cell carcinoma. J Am Acad Dermatol. 2014;70(4):637–43. doi:10.1016/j.jaad.2013.11.031. This study reinforced the utility of SLNB for tumors of any size and correlated the number of positive nodes with survival.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ko JS, Prieto VG, Elson PJ, Vilain RE, Pulitzer MP, Scolyer RA, et al. Histological pattern of Merkel cell carcinoma sentinel lymph node metastasis improves stratification of stage III patients. Mod Pathol. 2015. doi:10.1038/modpathol.2015.109.

    Google Scholar 

  16. Hawryluk EB, O’Regan KN, Sheehy N, Guo Y, Dorosario A, Sakellis CG, et al. Positron emission tomography/computed tomography imaging in Merkel cell carcinoma: a study of 270 scans in 97 patients at the Dana-Farber/Brigham and Women’s Cancer Center. J Am Acad Dermatol. 2013;68(4):592–9. doi:10.1016/j.jaad.2012.08.042.

    Article  PubMed  Google Scholar 

  17. Treglia G, Kakhki VR, Giovanella L, Sadeghi R. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with Merkel cell carcinoma: a systematic review and meta-analysis. Am J Clin Dermatol. 2013;14(6):437–47. doi:10.1007/s40257-013-0040-x.

    Article  PubMed  Google Scholar 

  18. Colgan MB, Tarantola TI, Weaver AL, Wiseman GA, Roenigk RK, Brewer JD, et al. The predictive value of imaging studies in evaluating regional lymph node involvement in Merkel cell carcinoma. J Am Acad Dermatol. 2012;67(6):1250–6. doi:10.1016/j.jaad.2012.03.018.

    Article  PubMed  Google Scholar 

  19. Peloschek P, Novotny C, Mueller-Mang C, Weber M, Sailer J, Dawid M, et al. Diagnostic imaging in Merkel cell carcinoma: lessons to learn from 16 cases with correlation of sonography, CT, MRI and PET. Eur J Radiol. 2010;73(2):317–23. doi:10.1016/j.ejrad.2008.10.032.

    Article  PubMed  Google Scholar 

  20. Kritikos N, Priftakis D, Stavrinides S, Kleanthous S, Sarafianou E. Nuclear medicine techniques in Merkel cell carcinoma: a case report and review of the literature. Oncol Lett. 2015;10(3):1610–6. doi:10.3892/ol.2015.3377.

    PubMed  PubMed Central  Google Scholar 

  21. Liu J, Larcos G, Howle J, Veness M. Lack of clinical impact of (18) F-fluorodeoxyglucose positron emission tomography with simultaneous computed tomography for stage I and II Merkel cell carcinoma with concurrent sentinel lymph node biopsy staging: a single institutional experience from Westmead Hospital, Sydney. Australas J Dermatol. 2015. doi:10.1111/ajd.12400.

    Google Scholar 

  22. Fantini F, Johansson O. Neurochemical markers in human cutaneous Merkel cells. An immunohistochemical investigation. Exp Dermatol. 1995;4(6):365–71.

    Article  CAS  PubMed  Google Scholar 

  23. Buder K, Lapa C, Kreissl MC, Schirbel A, Herrmann K, Schnack A, et al. Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging. BMC Cancer. 2014;14:268. doi:10.1186/1471-2407-14-268.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Epstude M, Tornquist K, Riklin C, di Lenardo F, Winterhalder R, Hug U, et al. Comparison of (18)F-FDG PET/CT and (68)Ga-DOTATATE PET/CT imaging in metastasized Merkel cell carcinoma. Clin Nucl Med. 2013;38(4):283–4. doi:10.1097/RLU.0b013e318281658e.

    Article  PubMed  Google Scholar 

  25. Garneski KM, Warcola AH, Feng Q, Kiviat NB, Leonard JH, Nghiem P. Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol. 2009;129(1):246–8. doi:10.1038/jid.2008.229.

    Article  CAS  PubMed  Google Scholar 

  26. Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology. 2013;435(1):118–30. doi:10.1016/j.virol.2012.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodig SJ, Cheng J, Wardzala J, DoRosario A, Scanlon JJ, Laga AC, et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest. 2012;122(12):4645–53. doi:10.1172/JCI64116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsushita M, Nonaka D, Iwasaki T, Kuwamoto S, Murakami I, Kato M, et al. A new in situ hybridization and immunohistochemistry with a novel antibody to detect small T-antigen expressions of Merkel cell polyomavirus (MCPyV). Diagn Pathol. 2014;9:65. doi:10.1186/1746-1596-9-65.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paulson KG, Carter JJ, Johnson LG, Cahill KW, Iyer JG, Schrama D, et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients. Cancer Res. 2010;70(21):8388–97. doi:10.1158/0008-5472.CAN-10-2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samimi M, Molet L, Fleury M, Laude H, Carlotti A, Gardair C, et al. Prognostic value of antibodies to Merkel cell polyomavirus T-antigens and VP1 protein in Merkel cell carcinoma patients. Br J Dermatol. 2015. doi:10.1111/bjd.14313.

    Google Scholar 

  31. Touzé A, Le Bidre E, Laude H, Fleury MJ, Cazal R, Arnold F, et al. High levels of antibodies against Merkel cell polyomavirus identify a subset of patients with Merkel cell carcinoma with better clinical outcome. J Clin Oncol. 2011;29(12):1612–9. doi:10.1200/JCO.2010.31.1704.

    Article  PubMed  Google Scholar 

  32. Sihto H, Kukko H, Koljonen V, Sankila R, Böhling T, Joensuu H. Merkel cell polyomavirus infection, large T antigen, retinoblastoma protein and outcome in Merkel cell carcinoma. Clin Cancer Res. 2011;17(14):4806–13. doi:10.1158/1078-0432.CCR-10-3363.

    Article  CAS  PubMed  Google Scholar 

  33. Wong SQ, Waldeck K, Vergara IA, Schröder J, Madore J, Wilmott JS, et al. UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res. 2015;75(24):5228–34. doi:10.1158/0008-5472.CAN-15-1877.

    Article  CAS  PubMed  Google Scholar 

  34. Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2015. doi:10.18632/oncotarget.6494. Whole exome sequencing identifies that MCV-negative MCCs have a higher mutational burden than MCV-positive tumors.

    Google Scholar 

  35. Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, et al. The distinctive mutational spectra of polyomavirus-negative Merkel cell carcinoma. Cancer Res. 2015;75(18):3720–7. doi:10.1158/0008-5472.CAN-15-0702. Whole exome sequencing identifies that MCV-negative MCCs have a higher mutational burden than MCV-positive tumors.

    Article  CAS  PubMed  Google Scholar 

  36. Rush Z, Fields RC, Lee N, Brownell I. Radiation therapy in the management of Merkel cell carcinoma: current perspectives. Expert Rev Dermatol. 2011;6(4):395–404. doi:10.1586/edm.11.40.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leonard JH, Ramsay JR, Kearsley JH, Birrell GW. Radiation sensitivity of Merkel cell carcinoma cell lines. Int J Radiat Oncol Biol Phys. 1995;32(5):1401–7. doi:10.1016/0360-3016(94)00610-W.

    Article  CAS  PubMed  Google Scholar 

  38. Lok B, Khan S, Mutter R, Liu J, Fields R, Pulitzer M, et al. Selective radiotherapy for the treatment of head and neck Merkel cell carcinoma. Cancer. 2012;118(16):3937–44. doi:10.1002/cncr.26738.

    Article  PubMed  Google Scholar 

  39. Harrington C, Kwan W. Radiotherapy and conservative surgery in the locoregional management of Merkel cell carcinoma: the British Columbia Cancer Agency experience. Ann Surg Oncol. 2015. doi:10.1245/s10434-015-4812-9.

    PubMed  Google Scholar 

  40. Veness M, Foote M, Gebski V, Poulsen M. The role of radiotherapy alone in patients with Merkel cell carcinoma: reporting the Australian experience of 43 patients. Int J Radiat Oncol Biol Phys. 2010;78(3):703–9. doi:10.1016/j.ijrobp.2009.08.011.

    Article  PubMed  Google Scholar 

  41. Mortier L, Mirabel X, Fournier C, Piette F, Lartigau E. Radiotherapy alone for primary Merkel cell carcinoma. Arch Dermatol. 2003;139(12):1587–90. doi:10.1001/archderm.139.12.1587.

    Article  PubMed  Google Scholar 

  42. Jouary T, Leyral C, Dreno B, Doussau A, Sassolas B, Beylot-Barry M, et al. Adjuvant prophylactic regional radiotherapy versus observation in stage I Merkel cell carcinoma: a multicentric prospective randomized study. Ann Oncol. 2012;23(4):1074–80. doi:10.1093/annonc/mdr318.

    Article  CAS  PubMed  Google Scholar 

  43. Bichakjian CK, Harms KL, Schwartz JL. Selective use of adjuvant therapy in the management of Merkel cell carcinoma. JAMA Oncol. 2015;1(8):1162–3. doi:10.1001/jamaoncol.2015.1503.

    Article  PubMed  Google Scholar 

  44. Grotz TE, Joseph RW, Pockaj BA, Foote RL, Otley CC, Bagaria SP, et al. Negative sentinel lymph node biopsy in Merkel cell carcinoma is associated with a low risk of same-nodal-basin recurrences. Ann Surg Oncol. 2015;22(12):4060–6. doi:10.1245/s10434-015-4421-7. A single-institution study suggesting that regional RT can be avoided if SLNB is negative.

    Article  PubMed  Google Scholar 

  45. Desch L, Kunstfeld R. Merkel cell carcinoma: chemotherapy and emerging new therapeutic options. J Skin Cancer. 2013;2013:327150. doi:10.1155/2013/327150.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tai PT, Yu E, Winquist E, Hammond A, Stitt L, Tonita J, et al. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: case series and review of 204 cases. J Clin Oncol. 2000;18(12):2493–9.

    CAS  PubMed  Google Scholar 

  47. Iyer JG, Parvathaneni U, Gooley T, Miller NJ, Markowitz E, Blom A, et al. Single-fraction radiation therapy in patients with metastatic Merkel cell carcinoma. Cancer Med. 2015;4(8):1161–70. doi:10.1002/cam4.458. This study used SFRT as a successful alternative to chemotherapy for palliation in advanced disease.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garibyan L, Cotter SE, Hansen JL, Noell C, Dorosario A, O’Farrell DA, et al. Palliative treatment for in-transit cutaneous metastases of Merkel cell carcinoma using surface-mold computer-optimized high-dose-rate brachytherapy. Cancer J. 2013;19(4):283–7. doi:10.1097/PPO.0b013e31829e3566.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lyngaa R, Pedersen NW, Schrama D, Thrue CA, Ibrani D, Met O, et al. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors. Clin Cancer Res. 2014;20(7):1768–78. doi:10.1158/1078-0432.CCR-13-2697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, et al. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res. 2013;1(1):54–63. doi:10.1158/2326-6066.CIR-13-0034.

    Article  CAS  PubMed  Google Scholar 

  52. Avelumab in subjects with Merkel cell carcinoma (JAVELIN Merkel 200). National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02155647. Accessed Jan 2016.

  53. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21(19):4286–93. doi:10.1158/1078-0432.CCR-14-2607.

    Article  CAS  PubMed  Google Scholar 

  54. Nghiem P, Bhatia S, Daud A, Friedlander P, Kluger H, Kohrt H et al. Activity of PD-1 blockade with pembrolizumab as first systemic therapy in patients with advanced Merkel cell carcinoma [abstract]. The European Cancer Congress; September 27; Vienna, Austria. 2015. This early study demonstrated exceptionally high initial response rates.

  55. Pembrolizumab in treating patients with advanced Merkel cell cancer. National Institutes of Health. https://clinicaltrials.gov/show/NCT02267603. Accessed Jan 2016.

  56. Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30. doi:10.1016/S1470-2045(15)70122-1.

    Article  CAS  PubMed  Google Scholar 

  57. Adjuvant therapy of completely resected Merkel cell carcinoma with 3 mg/kg BW ipilimumab (Yervoy®) versus observation (ADMEC). National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02196961. Accessed Jan 2016.

  58. Valsecchi ME. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270. doi:10.1056/NEJMc1509660#SA1.

    Article  PubMed  Google Scholar 

  59. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi:10.1056/NEJMoa1414428.

    Article  PubMed  Google Scholar 

  60. A phase 1/2 study of in situ vaccination with tremelimumab and IV durvalumab plus polyICLC in subjects with advanced, measurable, biopsy-accessible cancers. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02643303. Accessed Jan 2016.

  61. Sihto H, Böhling T, Kavola H, Koljonen V, Salmi M, Jalkanen S, et al. Tumor infiltrating immune cells and outcome of Merkel cell carcinoma: a population-based study. Clin Cancer Res. 2012;18(10):2872–81. doi:10.1158/1078-0432.CCR-11-3020.

    Article  CAS  PubMed  Google Scholar 

  62. Paulson KG, Iyer JG, Simonson WT, Blom A, Thibodeau RM, Schmidt M, et al. CD8+ lymphocyte intratumoral infiltration as a stage-independent predictor of Merkel cell carcinoma survival: a population-based study. Am J Clin Pathol. 2014;142(4):452–8. doi:10.1309/AJCPIKDZM39CRPNC.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Paulson KG, Iyer JG, Tegeder AR, Thibodeau R, Schelter J, Koba S, et al. Transcriptome-wide studies of Merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J Clin Oncol. 2011;29(12):1539–46. doi:10.1200/JCO.2010.30.6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmidinger M, Hejna M, Zielinski CC. Aldesleukin in advanced renal cell carcinoma. Expert Rev Anticancer Ther. 2004;4(6):957–80. doi:10.1586/14737140.4.6.957.

    Article  CAS  PubMed  Google Scholar 

  65. Viral oncoprotein targeted autologous T cell therapy for Merkel cell carcinoma. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01758458. Accessed Jan 2016.

  66. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. doi:10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chapuis AG, Afanasiev OK, Iyer JG, Paulson KG, Parvathaneni U, Hwang JH, et al. Regression of metastatic Merkel cell carcinoma following transfer of polyomavirus-specific T cells and therapies capable of re-inducing HLA class-I. Cancer Immunol Res. 2014;2(1):27–36. doi:10.1158/2326-6066.CIR-13-0087.

    Article  CAS  PubMed  Google Scholar 

  68. Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther. 2002;5(6):668–75. doi:10.1006/mthe.2002.0601.

    Article  CAS  PubMed  Google Scholar 

  69. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26(36):5896–903. doi:10.1200/JCO.2007.15.6794.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. IL-12 gene and in vivo electroporation-mediated plasmid DNA vaccine therapy in patients with Merkel cell cancer. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01440816. Accessed Jan 2016.

  71. Hafner C, Houben R, Baeurle A, Ritter C, Schrama D, Landthaler M, et al. Activation of the PI3K/AKT pathway in Merkel cell carcinoma. PLoS One. 2012;7(2), e31255. doi:10.1371/journal.pone.0031255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nardi V, Song Y, Santamaria-Barria JA, Cosper AK, Lam Q, Faber AC, et al. Activation of PI3K signaling in Merkel cell carcinoma. Clin Cancer Res. 2012;18(5):1227–36. doi:10.1158/1078-0432.CCR-11-2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shiver MB, Mahmoud F, Gao L. Response to idelalisib in a patient with stage IV Merkel-cell carcinoma. N Engl J Med. 2015;373(16):1580–2. doi:10.1056/NEJMc1507446.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Iwasaki T, Matsushita M, Nonaka D, Kuwamoto S, Kato M, Murakami I, et al. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas. Hum Pathol. 2015;46(2):210–6. doi:10.1016/j.humpath.2014.07.025.

    Article  CAS  PubMed  Google Scholar 

  75. Kannan A, Lin Z, Shao Q, Zhao S, Fang B, Moreno MA, et al. Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget. 2015. doi:10.18632/oncotarget.5878.

    PubMed  Google Scholar 

  76. Dose escalation study of MLN0128 in subjects with advanced malignancies. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01058707. Accessed Jan 2016.

  77. MLN0128 in recurrent/metastatic Merkel cell carcinoma. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02514824. Accessed Jan 2016.

  78. Brunner M, Thurnher D, Pammer J, Geleff S, Heiduschka G, Reinisch CM, et al. Expression of VEGF-A/C, VEGF-R2, PDGF-alpha/beta, c-kit, EGFR, Her-2/Neu, Mcl-1 and Bmi-1 in Merkel cell carcinoma. Mod Pathol. 2008;21(7):876–84. doi:10.1038/modpathol.2008.63.

    Article  CAS  PubMed  Google Scholar 

  79. Davids MS, Davids M, Charlton A, Ng SS, Chong ML, Laubscher K, et al. Response to a novel multitargeted tyrosine kinase inhibitor pazopanib in metastatic Merkel cell carcinoma. J Clin Oncol. 2009;27(26):e97–100. doi:10.1200/JCO.2009.21.8149.

    Article  PubMed  Google Scholar 

  80. A trial of pazopanib for Merkel cell skin cancer (UKMCC-01). Cancer Research UK. http://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-of-pazopanib-for-merkel-cell-carcinoma-ukmcc-01. Accessed Jan 2016.

  81. Cabozantinib in recurrent/metastatic Merkel cell carcinoma. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02036476. Accessed Jan 2016.

  82. Samlowski WE, Moon J, Tuthill RJ, Heinrich MC, Balzer-Haas NS, Merl SA, et al. A phase II trial of imatinib mesylate in Merkel cell carcinoma (neuroendocrine carcinoma of the skin): a Southwest Oncology Group study (S0331). Am J Clin Oncol. 2010;33(5):495–9. doi:10.1097/COC.0b013e3181b9cf04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loader DE, Feldmann R, Baumgartner M, Breier F, Schrama D, Becker JC, et al. Clinical remission of Merkel cell carcinoma after treatment with imatinib. J Am Acad Dermatol. 2013;69(4):e181–3. doi:10.1016/j.jaad.2013.03.042.

    Article  PubMed  Google Scholar 

  84. Kratochwil C, Giesel FL, López-Benítez R, Schimpfky N, Kunze K, Eisenhut M, et al. Intraindividual comparison of selective arterial versus venous 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res. 2010;16(10):2899–905. doi:10.1158/1078-0432.CCR-10-0004.

    Article  CAS  PubMed  Google Scholar 

  85. Pool SE, Kam BL, Koning GA, Konijnenberg M, Ten Hagen TL, Breeman WA, et al. [(111)In-DTPA]octreotide tumor uptake in GEPNET liver metastases after intra-arterial administration: an overview of preclinical and clinical observations and implications for tumor radiation dose after peptide radionuclide therapy. Cancer Biother Radiopharm. 2014;29(4):179–87. doi:10.1089/cbr.2013.1552.

    Article  CAS  PubMed  Google Scholar 

  86. Limouris GS, Chatziioannou A, Kontogeorgakos D, Mourikis D, Lyra M, Dimitriou P, et al. Selective hepatic arterial infusion of In-111-DTPA-Phe1-octreotide in neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2008;35(10):1827–37. doi:10.1007/s00259-008-0779-0.

    Article  CAS  PubMed  Google Scholar 

  87. Kwekkeboom DJ, Krenning EP. Peptide receptor radionuclide therapy in the treatment of neuroendocrine tumors. Hematol Oncol Clin North Am. 2016;30(1):179–91. doi:10.1016/j.hoc.2015.09.009.

    Article  PubMed  Google Scholar 

  88. 177Lutetium-DOTA-octreotate therapy in somatostatin receptor-expressing neuroendocrine neoplasms. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01237457. Accessed Jan 2016.

  89. A phase I, exploratory, intra-patient dose escalation study to investigate the preliminary safety, pharmacokinetics, and anti-tumor activity of pasireotide (SOM230). National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01652547. Accessed Jan 2016.

  90. Treatment of unresectable and/or metastatic Merkel cell carcinoma by somatostatine analogues. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02351128. Accessed Jan 2016.

  91. Gaiser MR, Daily K, Hoffmann J, Brune M, Enk A, Brownell I. Evaluating blood levels of neuron specific enolase, chromogranin A, and circulating tumor cells as Merkel cell carcinoma biomarkers. Oncotarget. 2015;6(28):26472–82. doi:10.18632/oncotarget.4500.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Blom A, Bhatia S, Pietromonaco S, Koehler K, Iyer JG, Nagase K, et al. Clinical utility of a circulating tumor cell assay in Merkel cell carcinoma. J Am Acad Dermatol. 2014;70(3):449–55. doi:10.1016/j.jaad.2013.10.051.

    Article  PubMed  Google Scholar 

  93. Zeng Q, Gomez BP, Viscidi RP, Peng S, He L, Ma B, et al. Development of a DNA vaccine targeting Merkel cell polyomavirus. Vaccine. 2012;30(7):1322–9. doi:10.1016/j.vaccine.2011.12.072.

    Article  CAS  PubMed  Google Scholar 

  94. Gomez B, He L, Tsai YC, Wu TC, Viscidi RP, Hung CF. Creation of a Merkel cell polyomavirus small T antigen-expressing murine tumor model and a DNA vaccine targeting small T antigen. Cell Biosci. 2013;3(1):29. doi:10.1186/2045-3701-3-29.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. 2014;88(5):986–97. doi:10.1016/j.ijrobp.2013.08.035.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barker CA, Postow MA, Khan SA, Beal K, Parhar PK, Yamada Y, et al. Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol Res. 2013;1(2):92–8. doi:10.1158/2326-6066.CIR-13-0082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paulson KG, Tegeder A, Willmes C, Iyer JG, Afanasiev OK, Schrama D, et al. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma. Cancer Immunol Res. 2014;2(11):1071–9. doi:10.1158/2326-6066.CIR-14-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Brownell MD, PhD.

Ethics declarations

Disclosure

The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the US Navy, the Department of Defense, or the National Institutes of Health.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Skin Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassler, N.M., Merrill, D., Bichakjian, C.K. et al. Merkel Cell Carcinoma Therapeutic Update. Curr. Treat. Options in Oncol. 17, 36 (2016). https://doi.org/10.1007/s11864-016-0409-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0409-1

Keywords

Navigation