Skip to main content
Log in

The Principle of Detect SO2 Concentration by Using the Electrochemical Method in Ionic Liquid

  • Chemistry and Physics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The reduction of SO2 with different concentrations at a platinum microelectrode was investigated by cyclic voltammetry (CV) in 1-(butyl)-3-methylimidazolium hexafluorophosphate ([Bmim]PF6). We speculated that the reaction mechanism of reduction may form a macromolecular complex, and the higher the concentration of SO2, the larger the molecular weight of the complex. The higher the concentration of SO2, the greater the diffusion coefficient of SO2 in [Bmim]PF6. There is a good quadratic function relationship between the reduction peak current and SO2 concentrations in the range from 2% to 100%, which promises a kind of ionic liquid electrolyte for the detection of SO2 gas with a wide range of concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasserscheid P, Welton T. Ionic Liquids in Synthesis [M]. Weinheim: Wiley-VCH, 2002.

    Book  Google Scholar 

  2. Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future [J]. Nature Materials, 2009, 8(8): 621–629.

    Article  CAS  PubMed  Google Scholar 

  3. Buzzeo M C, Hardacre C, Compton R G. Use of room temperature ionic liquids in gas sensor design [J]. Analytical Chemistry, 2004, 76(15): 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  4. Huang Q, Li W, Wu T, et al. Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid [J]. Electrochemistry Communications, 2018, 88: 93–96.

    Article  CAS  Google Scholar 

  5. Huang Q, Li Y, Jin X B, et al. Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids [J]. Energy & Environmental Science, 2011, 4(6): 2125–2133.

    Article  CAS  Google Scholar 

  6. Sun H J, Yu L P, Jin X B, et al. Unusual anodic behaviour of chloride ion in 1-butyl-3methylimidazolium hexafluorophosphate [J]. Electrochemistry Communications, 2005, 7(7): 685–691.

    Article  CAS  Google Scholar 

  7. Wang R, Hoyano S, Ohsaka T. O2 gas sensor using supported hydrophobic room-temperature ionic liquid membrane-coated electrode [J]. Chemistry Letters, 2004, 33(1): 6–7.

    Article  CAS  Google Scholar 

  8. Dyson P J, Laurenczy G, Ohlin C A, et al. Determination of hydrogen concentration in ionic liquid and the effect (or lack of) on rates of hydrogenation [J]. Chemical Communications, 2003, 19: 2418–2419.

    Article  Google Scholar 

  9. Broder T L, Silvester D S, Aldous L, et al. Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2] [J]. The Journal of Physical Chemistry B, 2007, 111(27): 7778–7785.

    Article  CAS  PubMed  Google Scholar 

  10. Buzzeo M C, Giovanelli D, Lawrence N S, et al. Elucidation of the electrochemical oxidation pathway of ammonia in dimethylformamide and the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [J]. Electroanalysis, 2004, 16(11): 888–896.

    Article  CAS  Google Scholar 

  11. Barrosse A L E, Silvester D S, Aldous L, et al. Electroreduction of sulfur dioxide in some room-temperature ionic liquids [J]. The Journal of Physical Chemistry C, 2008, 112(9): 3398–3404.

    Article  CAS  Google Scholar 

  12. Potteau E, Levillain E, Lelieur J P. Mechanism of the electrochemical reduction of sulfur dioxide in non-aqueous solvents [J]. Journal of Electroanalytical Chemistry, 1999, 476 (1): 15–25.

    Article  CAS  Google Scholar 

  13. Bruno P, Caselli M, Traini A. Study of sulfur dioxide reduction mechanism in dimethyl sulfoxide [J]. Journal of Electroanalytical Chemistry, 1980, 113(1): 99–111.

    Article  CAS  Google Scholar 

  14. Martin R P, Sawyer D T. Electrochemical reduction of sulfur dioxide in dimethylformamide [J]. Inorganic Chemistry, 1972, 11(11): 2644–2647.

    Article  CAS  Google Scholar 

  15. Winlove C P, Parker K H, Oxenham R K C. The measurement of oxygen diffusivity and concentration by chronoamperometry using microelectrodes [J]. Journal of Electroanalytical Chemistry, 1984, 170(1–2): 293–304.

    Article  CAS  Google Scholar 

  16. Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications [M]. 2nd Ed. New York: John Wily & Sons, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wu.

Additional information

Foundation item: Supported by the Natural Science Foundation of Hubei Province (2018CFC827) and College Outstanding Young Scientific and Technological Innovation Team of Hubei Province (T201620)

Biography: HUANG Qing, female, Lecturer, Ph. D., research direction: electrochemistry in ionic liquids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Hu, Y., Wang, J. et al. The Principle of Detect SO2 Concentration by Using the Electrochemical Method in Ionic Liquid. Wuhan Univ. J. Nat. Sci. 24, 400–404 (2019). https://doi.org/10.1007/s11859-019-1412-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-019-1412-8

Key words

CLC number

Navigation