Skip to main content
Log in

Preparation of In2S3 and Cu-Doped In2S3 2D Ultrathin Nanoflakes with Tunable Absorption and Intense Photocurrent Response

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

We reported an effective method to synthesize In2S3 and Cu-doped In2S3 two-dimensional ultrathin nanoflakes by the hydrothermal method through tuning the Cu/In molar ratio. The transmission electron microscope images showed that the products had ultrathin flake-like shape with wrinkling and rolling. The X-ray diffraction patterns indicated the crystal phase of nanoflakes was varied from β-In2S3 to tetragonal-CuInS2 as the Cu/In molar ratio was increased. The In2S3 nanoflakes exhibited absorption band at 450 nm, while new absorption peaks in turn appeared at 550 nm and 670 nm as the Cu/In molar ratio was increased. In addition, the two-dimensional ultrathin nanoflakes exhibited intense photocurrent response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao G X, Zhao Y B, Wu Z S. Synthesis and characterization of In2S3 nanoparticles [J]. Journal of Alloys and Compounds, 2009, 472(1-2): 325–327.

    Article  CAS  Google Scholar 

  2. Yan C, Liu F Y, Song N, et al. Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4 [J]. Applied Physics Letters, 2014, 104(17): 173901.

    Article  CAS  Google Scholar 

  3. Xiong X, Zhang Q, Gan L, et al. Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition [J]. Nano Research, 2016, 9 (12): 3848–3857.

    Article  CAS  Google Scholar 

  4. Siol S, Dhakal T P, Gudavalli G S, et al. Combinatorial reactive sputtering of In2S3 as an alternative contact layer for thin film solar cells [J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14004–14011.

    Article  CAS  Google Scholar 

  5. Chen W, Bovin J O, Joly A G, et al. Full-color emission from In2S3 and In2S3:Eu3+ nanoparticles [J]. The Journal of Physical Chemistry B, 2004, 108(32): 11927–11934.

    Article  CAS  Google Scholar 

  6. Wang L G, Xia L, Wu Y J, et al. Zr-doped β-In2S3 ultrathin nanoflakes as photoanodes: Enhanced visible-light-driven photoelectrochemical water splitting [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2606–2614.

    Article  CAS  Google Scholar 

  7. Yao B B, Zhao R, Lu S Y, et al. Quantum phase transition from superparamagnetic to quantum superparamagnetic state in In2S3:Eu nanoparticles [J]. RCS Advances, 2013, 3(33): 13878–13883.

    CAS  Google Scholar 

  8. Rodriguez-Hernandez P E, Nieto-Zepeda K E, Guillén-Cervantes A, et al. Structural and optical properties of In2S3 thin films grown by chemical bath deposition on pet flexible substrates [J]. Chalcogenide Letters, 2017, 14(8): 331–335.

    CAS  Google Scholar 

  9. Kim T W, Park H, Bae H, et al. Sulfurization-induced growth of single-crystalline high-mobility β-In2S3 films on InP [J]. AIP Advances, 2017, 7(12): 125109.

    Article  CAS  Google Scholar 

  10. Bi K, Sui N, Wang Y H, et al. Temperature-dependent charge carrier dynamics investigation of heterostructured Cu2S-In2S3 nanocrystals films using injected charge extraction by linearly increasing voltage [J]. Applied Physics Letters, 2017, 110(8): 083104.

    Article  CAS  Google Scholar 

  11. Kim J, Hiroi H, Todorov T K, et al. High efficiency Cu2ZnSn (S, Se)4 solar cells by applying a double In2S3/CdS emitter [J]. Advanced Materials, 2014, 26(44): 7427–7431.

    Article  PubMed  CAS  Google Scholar 

  12. John T T, Mathew M, Kartha C S, et al. CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency [J]. Solar Energy Materials and Solar Cells, 2005, 89(1): 27–36.

    Article  CAS  Google Scholar 

  13. Zhou J, Tian G H, Chen Y J, et al. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity [J]. Scientific Reports, 2014, 4(2955): 4027.

    PubMed  PubMed Central  Google Scholar 

  14. Li H J, Gao Y Y, Zhou Y, et al. Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays [J]. Nano Letters, 2016, 16(9): 5547–5552.

    Article  PubMed  CAS  Google Scholar 

  15. Fu X L, Wang X X, Chen Z X, et al. Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation [J]. Applied Catalysis B: Environmental, 2010, 95(3-4): 393–399.

    Article  CAS  Google Scholar 

  16. Chen L Y, Zhang Z D, Wang W Z. Self-assembled porous 3D flowerlike β-In2S3 structures: Synthesis, characterization, and optical properties [J]. The Journal of Physical Chemistry C, 2008, 112(11): 4117–4123.

    Article  CAS  Google Scholar 

  17. Steigmann G A, Sutherland H H, Goodyear J. The crystal structure of β-In2S3 [J]. Acta Crystallographica, 1965, 19(6): 967–971.

    Article  CAS  Google Scholar 

  18. Cherian A S, Mathew M, Kartha C S, et al. Role of chlorine on the opto-electronic properties of β-In2S3 thin films [J]. Thin Solid Films, 2010, 518(7): 1779–1783.

    Article  CAS  Google Scholar 

  19. Jayakrishnan R, Sebastian T, Sudha kartha C, et al. Effect of defect bands in β-In2S3 thin films [J]. Journal of Applied Physics, 2012, 111(9): 093714.

    Article  CAS  Google Scholar 

  20. Choe S H, Bang T H, Kim N O, et al. Optical properties of β-In2S3 and β-In2S3:Co2+ single crystals [J]. Semiconductor Science and Technology, 2001, 16(2): 98–102.

    Article  CAS  Google Scholar 

  21. Maha M H Z, Bagheri-Mohagheghi M M, Azimi-Juybari H. Tin doped β-In2S3 thin films prepared by spray pyrolysis: Correlation between structural, electrical, optical, thermoelectric and photoconductive properties [J]. Thin Solid Films, 2013, 536(1): 57–62.

    Article  CAS  Google Scholar 

  22. Yao B B, Wang P, Wang S M, et al. Ce doping influence on the magnetic phase transition in In2S3:Ce nanoparticles [J]. CrystEngComm, 2014, 16(13): 2584–2588.

    Article  CAS  Google Scholar 

  23. Tapia C, Berglund S P, Friedrich D, et al. Synthesis and characterization of V-doped β-In2S3 thin films on FTO substrates [J]. The Journal of Physical Chemistry C, 2016, 120(50): 28753–28761.

    Article  CAS  Google Scholar 

  24. Tang J, Konstantatos G, Hinds S, et al. Heavy-metal-free solution-processed nanoparticle-based photodetectors: Doping of intrinsic vacancies enables engineering of sensitivity and speed [J]. ACS Nano, 2009, 3(2): 331–338.

    Article  PubMed  CAS  Google Scholar 

  25. Chen B K, Chang S, Li D, et al. Template synthesis of Cu-InS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells [J]. Chemistry of Materials, 2015, 27(17): 5949–5956.

    Article  CAS  Google Scholar 

  26. Liu L, Liu H J, Kou H Z, et al. Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow microspheres: Synthesis and electrochemical properties [J]. Crystal Growth & Design, 2009, 9(1): 113–117.

    Article  CAS  Google Scholar 

  27. Peng S J, Liang J, Zhang L, et al. Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures [J]. Journal of Crystal Growth, 2007, 305(1): 99–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Additional information

Foundation item: Supported by the National Key Research & Development Program of China (2017YFA0303402), and the Large-Scale Instrument and Equipment Sharing Foundation of Wuhan University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, K., Pan, G. et al. Preparation of In2S3 and Cu-Doped In2S3 2D Ultrathin Nanoflakes with Tunable Absorption and Intense Photocurrent Response. Wuhan Univ. J. Nat. Sci. 23, 424–428 (2018). https://doi.org/10.1007/s11859-018-1343-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1343-9

Key words

CLC number

Navigation