Skip to main content
Log in

Focusing Solar Spectrum by Anthracene Molecules

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Conventionally, each fluorophore is only clarified with the wavelength of incident beam shorter (down-conversion) or longer (up-conversion) than that of emission light. However, three anthracenes presented in this paper are the wavelength-focused (WF) molecules which can shift the portions of shorter and longer wavelengths of incident light into an identical wavelength in between. UV (ultraviolet) and NIR (near infrared) portions of Xenon light-simulated solar spectrum are focused into visible light with maximum wavelengths ranging from 415 to 471 nm through the two-way photoluminescence of the three anthracenes (anthracene (AN), fluoranthene (FLA) and 9, 10-diphenylanthracene (DPA)). At the same time, the intensity of the visible light is two times as that of excitation light. Besides, DPA dissolved in different solvents shows excellent fluorescence features. The results present great potential for applications in enhancing the intensity of solar spectrum at visible region and utilizing more portions of sunlight with solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen S S, Qi Y, Hisatom T, et al. Efficient visible-lightdriven z-scheme overall water splitting using a MgTa2O6-xNy /TaON heterostructure photocatalyst for H2 evolution [J]. Angew Chem Int Ed, 2015, 54(29): 8498–8501.

    Article  CAS  Google Scholar 

  2. Wei D. Dye sensitized solar cells [J]. Int J Mol Sci, 2010, 11(3): 1103–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cheng Y J, Yang S H, Hsu C S. Synthesis of conjugated polymers for organic solar cell applications [J]. Chem Rev, 2009, 109(11): 5868–5923.

    Article  PubMed  CAS  Google Scholar 

  4. Yamamoto K J, Nakajima A, Yoshimi M, et al. A high efficiency thin film silicon solar cell and module [J]. Solar Energy, 2004, 77(6): 939–949.

    Article  CAS  Google Scholar 

  5. Saga T. Advances in crystalline silicon solar cell technology for industrial mass production [J]. NPG Asia Materials, 2010, 2(3): 96–102.

    Article  Google Scholar 

  6. Huang S Y, Han S Y, Huang W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J]. Chem Soc Rev, 2013, 42(1): 173–201.

    Article  PubMed  CAS  Google Scholar 

  7. Naccache R, Vetrone F, Capobianco J A. Lanthanide-doped upconverting nanoparticles: Harvesting light for solar cells [J]. Chem Sus Chem, 2013, 6(8): 1308–1311.

    Article  CAS  Google Scholar 

  8. Hafez H, Saif M, Abdel-Mottaleb M S A. Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells [J]. J Power Sources, 2011, 196(13): 5792–5796.

    Article  CAS  Google Scholar 

  9. Yan R X, Li Y. Down/Up conversion in Ln3+-doped YF3 nanocrystals [J]. Adv Funct Mater, 2005, 15(5): 763–770.

    Article  CAS  Google Scholar 

  10. Zhuo S J, Shao M G, Lee S T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis [J]. ACS Nano, 2012, 6(2): 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Peng D F, Jiu Q, et al. Photon upconversion in core-shell nanoparticles [J]. Chem Soc Rev, 2015, 44(6): 1318–1330.

    Article  PubMed  Google Scholar 

  12. Haase M, Schäfer H. Upconverting nanoparticles [J]. Angew Chem Int Ed, 2011, 50(26): 5808–5829.

    Article  CAS  Google Scholar 

  13. Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev, 2009, 38: 976–989.

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Chen M, Cao T Y, et al. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury [J]. J Am Chem Soc, 2013, 135(26): 9869–9876.

    Article  PubMed  CAS  Google Scholar 

  15. Min Y Z, Li J M, Liu F. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversionluminescent nanoparticles [J]. Angew Chem Int Ed, 2014, 126(4): 1030–1034.

    Article  Google Scholar 

  16. Li F F, Xiao L Q, Li Y, et al. The interception of a copper-based carbine radical with an a-carbonyl diazomethane radical: C1/C1N2 copolymerization [J]. Chem Commun, 2015, 51: 11964–11967.

    Article  CAS  Google Scholar 

  17. Jia X X, Li Y, Wu J L, et al. One-pot catalyst-free synthesis of down-and upconversion fluorescent oligopyrazolines from diazoacetates and maleic anhydride [J]. Polym Chem, 2015, 6(22): 4071–4079.

    Article  CAS  Google Scholar 

  18. Wang H Q, Nann T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis [J]. ACS Nano, 2009, 3(11): 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  19. He Q J, Shi J L, Cui X Z, et al. Rhodamine B-co-condensed spherical SBA-15 nanoparticles: Facile co-condensation synthesis and excellent fluorescence features [J]. J Mater Chem, 2009, 19(21): 3395–3403.

    Article  CAS  Google Scholar 

  20. Li Y, Chen C, Li F F, et al. Mechanistic studies of the copolymerization between ethyl diazoacetate and cinnamaldehyde [J]. Polym Chem, 2017, 8(18): 2881–2888.

    Article  CAS  Google Scholar 

  21. Jia X X, Li Y, Xiao L Q, et al. Synthesis and characterization of fluorescent oligo (3,4,5-triethoxycarbonyl-2-pyrazoline) [J]. Polym Chem, 2014, 5(16): 4781–4789.

    Article  CAS  Google Scholar 

  22. Chen C, Li Y, Jia X X, et al. Wavelength-focusing organic molecular materials with diazoacetate or fumarate as a monofluorophore [J]. New J Chem, 2017, 41: 3719–3722.

    Article  CAS  Google Scholar 

  23. Guli M, Chen Y, Li X T, et al. Fluorescence of postgraft-ing Rhodamine B in the mesopores of rodlike SBA-15 [J]. J Lumin, 2007, 126(2): 723–727.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Liu.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (21274112, 21074097)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Liu, L. Focusing Solar Spectrum by Anthracene Molecules. Wuhan Univ. J. Nat. Sci. 23, 412–417 (2018). https://doi.org/10.1007/s11859-018-1341-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1341-y

Key words

CLC number

Navigation