Skip to main content
Log in

Mg2+-Triggered and pH-Tuned in vitro Assembly of Trehalose-6-Phosphate Synthase

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The enzyme OtsA (trehalose-P synthase) plays a critical role in the biosynthesis of trehalose, which is a nonreducing disaccharide that plays important functions in many organisms. By using light scattering technique, we discovered that OtsA in Arthrobacter strain A3 polymerized in the presence of divalent metal ions (Mg2+ or Ca2+), and the kinetics of the assembly was dependent on their concentrations. We identified potential compounds that can affect the kinetics of the polymerization, particularly, heparin, which acts as a very promising inhibitor of the polymerization. The OtsA assembly turns out to be a very delicate process that is finely regulated by pH. OtsA may be in the polymerized form at physiological pH in vivo, suggesting a more complicated mechanism of the enzyme. These unique properties of OtsA provide novel insights into the molecular mechanism of the biosynthesis of trehalose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nobre A, Alarico S, Maranha A, et al. The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies [J]. Microbiology, 2014, 160(8): 1547–1570.

    Article  PubMed  CAS  Google Scholar 

  2. Pan Y T, Koroth Edavana V, Jourdian W J, et al. Trehalose synthase of mycobacterium smegmatis: Purification, cloning, expression, and properties of the enzyme [J]. Eur J Biochem, 2004, 271(21): 4259–4269.

    Article  PubMed  CAS  Google Scholar 

  3. Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose: A multifunctional molecule[J]. Glycobiology, 2003, 13(4): 17–27.

    Article  Google Scholar 

  4. Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae[J]. Prog Nucleic Acid Res Mol Biol, 1998, 58:197–237.

    Article  PubMed  CAS  Google Scholar 

  5. Lunn J E, Delorge I, Figueroa C M, et al. Trehalose metabolism in plants[J]. Plant Journal for Cell & Molecular Biology, 2014, 79(4): 544–567.

    Article  CAS  Google Scholar 

  6. Becker A, Schloder P, Steele J E, et al. The regulation of trehalose metabolism in insects[J]. Experientia, 1996, 52(5): 433–439.

    Article  PubMed  CAS  Google Scholar 

  7. Figueroa C M, Feil R, Ishihara H, et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability[J]. Plant Journal for Cell & Molecular Biology, 2016, 85(3): 410–423.

    Article  CAS  Google Scholar 

  8. Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation[J]. Microb Biotechnol, 2013, 6(5): 493–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brennan P J, Nikaido H. The envelope of mycobacteria[J]. Annu Rev Biochem, 1995, 64(64): 29–63.

    Article  PubMed  CAS  Google Scholar 

  10. Doehlemann G, Berndt P, Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea[J]. Microbiology, 2006, 152(9): 2625–2634.

    Article  PubMed  CAS  Google Scholar 

  11. Novo M T, Beltran G, Rozes N, et al. Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast[J]. Appl Microbiol Biotechnol, 2005, 66(5): 560–566.

    Article  PubMed  CAS  Google Scholar 

  12. Jagdale G B, Grewal P S, Salminen S O. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode [J]. J Parasitol, 2005, 91(5): 988–994.

    Article  PubMed  CAS  Google Scholar 

  13. Kaasen I, McDougall J, Strøm A R. Analysis of the OtsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex[J]. Gene, 1994, 145(1): 9–15.

    Article  PubMed  CAS  Google Scholar 

  14. Klein W, Ehmann U, Boos W. The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase[ J]. Research in Microbiology, 1991, 142(4): 359–371.

    Article  PubMed  CAS  Google Scholar 

  15. Paul M J, Primavesi L F, Jhurreea D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59: 417–441.

    Article  PubMed  CAS  Google Scholar 

  16. Avonce N, Leyman B, Thevelein J, et al. Trehalose metabolism and glucose sensing in plants[J]. Biochem Soc Trans, 2005, 33(1): 276–279.

    Article  PubMed  CAS  Google Scholar 

  17. Ramon M, Rolland F. Plant development: Introducing trehalose metabolism [J]. Trends Plant Sci, 2007, 12(5): 185–188.

    Article  PubMed  CAS  Google Scholar 

  18. Yan J, Qiao Y, Hu J, et al. Cloning, expression and characterization of a trehalose synthase gene from Rhodococcus opacus[J]. Protein J, 2013, 32(3): 223–229.

    Article  PubMed  CAS  Google Scholar 

  19. Mu M, Lu X K, Wang J J, et al. Genome-wide identification and analysis of the stress-resistance function of the TPS (trehalose-6-phosphate synthase) gene family in cotton[J]. BMC Genet, 2016, 17: 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fraenkel D, Nielsen J. Trehalose-6-phosphate synthase and stabilization of yeast glycolysis [J]. FEMS Yeast Res, 2016, 16(1): fov100.

    Article  PubMed  CAS  Google Scholar 

  21. Kalscheuer R, Koliwer-Brandl H. Genetics of mycobacterial Trehalose Metabolism[J]. Microbiol Spectr, 2014, 2(3): MGM2–0002–2013

    Article  CAS  Google Scholar 

  22. Chen X M, Jiang Y, Li Y T, et al. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3[J]. Extremophiles, 2011, 15(4): 499–508.

    Article  PubMed  CAS  Google Scholar 

  23. White-Ziegler C A, Um S, Perez N M, et al. Low temperature (23°C) increases expression of biofilm-, coldshock-and RpoS-dependent genes in Escherichia coli K-12[J]. Microbiology, 2008, 154(Pt 1): 148–166.

    Article  PubMed  CAS  Google Scholar 

  24. Cytryn E J, Sangurdekar D P, Streeter J G, et al. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress[J]. J Bacteriol, 2007, 189(19): 6751–6762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Park H C, Bae Y U, Cho S D, et al. Toluene-induced accumulation of trehalose by Pseudomonas sp. BCNU 106 through the expression of OtsA and OtsB homologues[J]. Lett Appl Microbiol, 2007, 44(1): 50–55.

    PubMed  CAS  Google Scholar 

  26. Caner S, Nguyen N, Aguda A, et al. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode [J]. Glycobiology, 2013, 23(9): 1075–1083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kern C, Wolf C, Bender F, et al. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: Gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening[J]. Insect Mol Biol, 2012, 21(4): 456–471.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang R, Pan Y T, He S, et al. Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis[J]. J Biol Chem, 2011, 286(41): 35601–35609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gibson R P, Turkenburg J P, Charnock S J, et al. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA[J]. Chemistry & Biology, 2002, 9(12): 1337–1346.

    Article  CAS  Google Scholar 

  30. Deng Y, Wang X, Guo H, et al. A trehalose-6-phosphate synthase gene from Saccharina japonica(Laminariales, Phaeophyceae) [J]. Mol Biol Rep, 2014, 41(1): 529–536.

    Article  PubMed  CAS  Google Scholar 

  31. Thevelein J M. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae[J]. Antonie Van Leeuwenhoek, 1992, 62(1-2): 109–130.

    Article  PubMed  CAS  Google Scholar 

  32. Blázquez M A, Lagunas R, Gancedo C, et al. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases[J]. FEBS Letters, 1993, 329(1-2): 51–54.

    Article  PubMed  Google Scholar 

  33. Kolbe A, Tiessen A, Schluepmann H, et al. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase[J]. Proc Natl Acad Sci USA, 2005, 102(31): 11118–11123.

    Article  PubMed  CAS  Google Scholar 

  34. Hou S, Wieczorek S A, Kaminski T S, et al. Characterization of Caulobacter crescentus FtsZ protein using dynamic light scattering[J]. J Biol Chem, 2012, 287(28): 23878–23886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. White E L, Ross L J, Reynolds R C, et al. Slow polymerization of Mycobacterium tuberculosis FtsZ[J]. J Bacteriol, 2000, 182(14): 4028–4034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Monterroso B, Alfonso C, Zorrilla S, et al. Combined analytical ultracentrifugation, light scattering and fluorescence spectroscopy studies on the functional associations of the bacterial division FtsZ protein[J]. Methods, 2013, 59(3): 349–362.

    Article  PubMed  CAS  Google Scholar 

  37. Tatkiewicz W, Elizondo E, Moreno E, et al. Methods for characterization of protein aggregates[J]. Methods Mol Biol, 2015, 1258:387–401.

    Article  PubMed  CAS  Google Scholar 

  38. Megharaj M, Avudainayagam S, Naidu R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste [J]. Curr Microbiol, 2003, 47(1): 51–54.

    Article  PubMed  CAS  Google Scholar 

  39. Kiessling J, Kruse S, Rensing S A, et al. Visualization of a cytoskeleton-like FtsZ network in chloroplasts[J]. J Cell Biol, 2000, 151(4): 945–950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sun H, Gao T, Chen X, et al. Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer[J]. J Biotechnol, 2016, 222: 23–24.

    Article  PubMed  CAS  Google Scholar 

  41. Castelli R, Porro F, Tarsia P. The heparins and cancer: Review of clinical trials and biological properties[J]. Vasc Med, 2004, 9(3): 205–213.

    Article  PubMed  Google Scholar 

  42. Nader H B, Chavante S F, dos-Santos E A, et al. Heparan sulfates and heparins: Similar compounds performing the same functions in vertebrates and invertebrates?[J]. Braz J Med Biol Res, 1999, 32(5): 529–538.

    Article  PubMed  CAS  Google Scholar 

  43. Mukherjee A, Lutkenhaus J. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations[J]. J Bacteriol, 1999, 181(3): 823–832.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ximing Chen or Jianxi Xiao.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (21305056) and the Open Fund of State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (T151402)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, F., Zhang, Y. et al. Mg2+-Triggered and pH-Tuned in vitro Assembly of Trehalose-6-Phosphate Synthase. Wuhan Univ. J. Nat. Sci. 23, 396–402 (2018). https://doi.org/10.1007/s11859-018-1339-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1339-5

Key words

CLC number

Navigation