Skip to main content
Log in

Seasonal Variation and Land-Use/Land-Cover Type Impacts on the Correlation of Urban Heat Island Intensity and Difference Vegetation Index with Satellite Data in Xi’an, China

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Green coverage has pronounced influences on urban heat island (UHI) effect, while the impacts of seasonal variation and Land-Use/Land-Cover (LULC) types on this effect has not been implemented. This paper investigated the spatio-seasonal characteristics of urban thermal environment and the vegetation-soil mixed area, and then explored the effects of vegetation status on UHI intensity from the perspectives of seasons and regions in Xi’an using four Landsat 8 images. UHI intensity index was implemented to extract UHI intensity based on thermal infrared imagery, and difference vegetation index (DVI) was used to represent vegetation-soil mixed area. Results indicated that DVI has impacts on UHI intensity, and their relations vary with season and region. In the whole Xi’an, if UHI intensity is smaller than -0.1, DVI increases with the increase of UHI intensity; whereas for UHI intensity is greater than -0.1, DVI decreases with increases of the UHI intensity from early spring to autumn. The highest correlation level was discovered in the autumn map (R2=0.713). Results of correlation analysis further displayed that DVI positively correlated with UHI intensity at impervious surface, and that the main urban area possessed the best correlation with R2=0.564 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bottyán Z, Unger J. A multiple linear statistical model for estimating the mean maximum urban heat island [J]. Theoretical & Applied Climatology, 2003, 75(3-4): 233–243.

    Article  Google Scholar 

  2. Voogt J A, Oke T R. Thermal remote sensing of urban climates [J]. Remote Sensing of Environment, 2003, 86(3): 370–384.

    Article  Google Scholar 

  3. Xian G, Crane M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data [J]. Remote Sensing of Environment, 2006, 104(2): 147–156.

    Article  Google Scholar 

  4. Yang Y B, Su W Z, Jiang N, et al. Spatial-temporal characteristics of urban heat island effect change of Nanjing city and its relationship with land use change [J]. Geographical Research, 2007, 26(5): 877–886 (Ch).

    Google Scholar 

  5. Sun S M, Lu C Y. Study on monitoring intensity of Urban Heat Island and taking it as an indicator for urban ecosystem by remote sensing [J]. Journal of Xiamen University, 2002, 41(1): 66–70 (Ch).

    Google Scholar 

  6. Whitford V, Ennos A R, Handley J F. “City form and natural process”—Indicators for the ecological performance of urban areas and their application to Merseyside, UK [J]. Landscape & Urban Planning, 2001, 57(2): 91–103.

    Article  Google Scholar 

  7. Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery [J]. Remote Sensing of Environment, 2007, 106(3): 375–386.

    Article  Google Scholar 

  8. Xu S, Shen R P, Yang X Y. A comparative study of different vegetation indices for estimating vegetation coverage based on the dimidiate pixel model [J]. Remote Sensing for Land & Resources, 2012, 24(4): 95–100.

    Google Scholar 

  9. Li J X, Song C H, Cao L, et al. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China [J]. Remote Sensing of Environment, 2011, 115(12): 3249–3263.

    Article  Google Scholar 

  10. Gao H Y, Cai X L, Hao H, et al. The impact of urbanization on the surface temperature in Xi’an [J]. Acta Geographica Sinica, 2009, 64(9): 1093–1102(Ch).

    Google Scholar 

  11. Zhu X M, Wang X H, Zhou Y F, et al. Spatial heterogeneity of Xi’an thermal environment under the expansion of built-up areas [J]. Chinese Journal of Ecology, 2017, 36(12): 3574–3583 (Ch).

    Google Scholar 

  12. Sobrino J A, Jiménez-Muñoz J C, Paolini L. Land surface temperature retrieval from Landsat TM5 [J]. Remote Sensing of Environment, 2004, 90(4): 434–446.

    Article  Google Scholar 

  13. Sòria G. Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site [J]. International Journal of Remote Sensing, 2004, 25(1): 215–230.

    Article  Google Scholar 

  14. Xu H Q. Change of Landsat 8 TIRS calibration parameters and its effect on land surface temperature retrieval [J]. Journal of Remote Sensing, 2016, 20(2): 229–235(Ch).

    Google Scholar 

  15. Jiménez-Muñoz J C, Sobrino J A, Skokovic D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data [J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(10): 1840–1843.

    Article  Google Scholar 

  16. Man S W, Nichol J. Spatial variability of frontal area index and its relationship with urban heat island intensity [J]. International Journal of Remote Sensing, 2013, 34(3): 885–896.

    Article  Google Scholar 

  17. Unger J, Sümeghy Z, Zoboki J. Temperature cross-section features in an urban area [J]. Atmospheric Research, 2001, 58(2): 117–127.

    Article  Google Scholar 

  18. Xu L Y, Xie X D, Li S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing [J]. Environmental Pollution, 2013, 178(1):102–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Zhao.

Additional information

Foundation item: Supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2017JM4035)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhu, X., Jiang, G. et al. Seasonal Variation and Land-Use/Land-Cover Type Impacts on the Correlation of Urban Heat Island Intensity and Difference Vegetation Index with Satellite Data in Xi’an, China. Wuhan Univ. J. Nat. Sci. 23, 387–395 (2018). https://doi.org/10.1007/s11859-018-1338-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1338-6

Key words

CLC number

Navigation