Skip to main content
Log in

Generation of Linear and Parabolic Concentration Gradients by Using a Christmas Tree-Shaped Microfluidic Network

  • Engineering Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network. The microfluidic gradient generator consists of two parts: a Christmas tree-shaped network for gradient generation and a broad microchannel for detection. A two-dimensional model was built to analyze the flow field and the mass transfer in the microfluidic network. The simulating results show that a series of linear and parabolic gradient profiles were generated via adjusting relative flow rate ratios of the two source solutions (RL2 ≥0.995 and RP2 ≥0.999), which could match well with the experimental results (RL2 ≥0.987 and RP2 ≥0.996). The proposed method is promising for the generation of linear and parabolic concentration gradient profiles, with the potential in chemical and biological applications such as combinatorial chemistry synthesis, stem cell differentiation or cytotoxicity assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dekker L, Segal A. Perspectives: signal transduction. Signals to move cells[J]. Science, 2000, 287(5455): 982–985.

    Article  PubMed  CAS  Google Scholar 

  2. Parent C A, Devreotes P N. A cell’s sense of direction[J]. Science, 1999, 284(5415): 765–770.

    Article  PubMed  CAS  Google Scholar 

  3. Weiner O D, Servant G, Welch M D, et al. Spatial control of actin polymerization during neutrophil chemotaxis[J]. Nature Cell Biology, 1999, 1(2): 75–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Walker G M, Sai J, Richmond A, et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator[J]. Lab on a Chip, 2005, 5(6): 611–618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cheng B, Wang S, Chen Y, et al. A combined negative and positive enrichment assay for cancer cells isolation and purification[ J]. Technology in Cancer Research & Treatment, 2016, 15(1): 69–76.

    Article  CAS  Google Scholar 

  6. Poulsen C R, Culbertson C T, Jacobson S C, et al. Static and dynamic acute cytotoxicity assays on microfluidic devices[J]. Analytical Chemistry, 2005, 77(2): 667–672.

    Article  PubMed  CAS  Google Scholar 

  7. Bang H, Lim S, Lee Y, et al. Serial dilution microchip for cytotoxicity test[J]. Journal of Micromechanics & Microengineering, 2004, 14(8): 1165–1170.

    Article  CAS  Google Scholar 

  8. Walker G M, Monteiro-Riviere N, Rouse J, et al. A linear dilution microfluidic device for cytotoxicity assays[J]. Lab on a Chip, 2007, 7(2): 226–232.

    Article  PubMed  CAS  Google Scholar 

  9. Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device[J]. Lab on a Chip, 2007, 7(12): 1696–1704.

    Article  PubMed  CAS  Google Scholar 

  10. Puttaraksa N, Whitlow H J, Napari M, et al. Development of a microfluidic design for an automatic lab-on-chip operation[ J]. Microfluid Nanofluid, 2016, 20(10): 142–152.

    Article  CAS  Google Scholar 

  11. Boyden S. Chemotactic effect of antibody and antigen[J]. Journal of Experimental Medicine, 1962, 115: 453–466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zicha D, Dunn G A, Brown A F. A new direct-viewing chemotaxis chamber[J]. Journal of Cell Science, 1991, 99(4): 769–775.

    PubMed  Google Scholar 

  13. Song H J, Poo M M. Signal transduction underlying growth cone guidance by diffusible factors[J]. Current Opinion Neurobiology, 1999, 9(3): 355–363.

    Article  CAS  Google Scholar 

  14. Mao H, Cremer P S, Manson M D. A sensitive, versatile microfluidic assay for bacterial chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5449–5454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Walker G M, Ozers M S, Beebe D J. Cell infection within a microfluidic device using virus gradients[J]. Sensors & Actuators B Chemical, 2004, 98(2): 347–355.

    Article  CAS  Google Scholar 

  16. Ketterer S, Hovermann D, Guebeli R J, et al. Transcription factor sensor system for parallel quantification of metabolites on-chip [J]. Analytical Chemistry, 2014, 86(24): 12152–12158.

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Cui H, Zhang P, et al. Efficient capture of cancer cells by their replicated surfaces reveals multiscale topographic interactions coupled with molecular recognition[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10537–10543.

    Article  CAS  Google Scholar 

  18. Zhou H, Yao S. A facile on-demand droplet microfluidic system for lab-on-a-chip applications[J]. Microfluid Nanofluid, 2013, 16(4): 667–675.

    Article  CAS  Google Scholar 

  19. Jeon N L, Dertinger S K W, Chiu D T, et al. Generation of solution and surface gradients using microfluidic systems[J]. Langmuir, 2000, 16(22): 8311–8316.

    Article  CAS  Google Scholar 

  20. Dertinger S K W, Chiu D T, Jeon N L, et al. Generation of gradients having complex shapes using microfluidic networks[ J]. Analytical Chemistry, 2001, 73(6): 1240–1246.

    Article  CAS  Google Scholar 

  21. Irimia D, Geba D A, Toner M. Universal microfluidic gradient generator [J]. Analytical Chemistry, 2006, 78(10): 3472–3477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yamada M, Hirano T, Yasuda M, et al. A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing [J]. Lab on a Chip, 2006, 6(2): 179–184.

    Article  PubMed  CAS  Google Scholar 

  23. Lee K, Kim C, Ahn B, et al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators [J]. Lab on a Chip, 2009, 9(5): 709–717.

    Article  PubMed  CAS  Google Scholar 

  24. Kim C, Lee K, Kim J H, et al. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations [J]. Lab on a Chip, 2008, 8(3): 473–479.

    Article  PubMed  CAS  Google Scholar 

  25. Liu W, Lin J M. Online monitoring of Lactate Efflux by multi-channel microfluidic chip-mass spectrometry for rapid Drug Evaluation[J]. ACS Sensors, 2016, 1(4):344–347.

    Article  CAS  Google Scholar 

  26. Gleichmann N, Malsch D, Horbert P, et al. Toward microfluidic design automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems[J]. Microfluid Nanofluid, 2014, 18(5): 1095–1105.

    Google Scholar 

  27. Li Y, Li L, Liu Z, et al. A microfluidic chip of multiple-channel array with various oxygen tensions for drug screening [J]. Microfluid Nanofluid, 2016, 20(7): 1–9.

    Article  CAS  Google Scholar 

  28. Duffy D C, McDonald J C, Schueller O J A, et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J]. Analytical Chemistry, 1998, 70(23): 4974–4984.

    Article  PubMed  CAS  Google Scholar 

  29. Glasgow I, Aubry N. Run with the ball: Sony Entertainment Television changed the way cricket is sold in India, and went on to reinvent the relationship between branding, product placement and programming [J]. Lab on a Chip, 2003, 3(3): 114–120.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nangang Zhang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China(81372358, 81527801, 51303140, and 81602489), the Natural Science Foundation of Hubei Province (2014CFA029), the Colleges of Hubei Province Outstanding Youth Science and Technology Innovation Team (T201305), and the Applied Foundational Research Program of Wuhan Municipal Science and Technology Bureau (2015060101010056)

Biography: SHEN Qilong, male, Master candidate, research direction: design and preparation of microfluidic chip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Zhou, Q., Lu, Z. et al. Generation of Linear and Parabolic Concentration Gradients by Using a Christmas Tree-Shaped Microfluidic Network. Wuhan Univ. J. Nat. Sci. 23, 244–250 (2018). https://doi.org/10.1007/s11859-018-1317-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1317-y

Key words

CLC number

Navigation