Topological Disk Mesh Morphing Based on Area-Preserving Parameterization

  • Cailing Chen
  • Kehua Su
  • Xinyan Zhu
Computer Science


Mesh morphing is a technique which gradually deforms a mesh into another one. Mesh parameterization, a powerful tool adopted to establish the one-to-one correspondence map between different meshes, is of great importance in 3D mesh morphing. However, current parameterization methods used in mesh morphing induce large area distortion, resulting in geometric information loss. In this paper, we propose a new morphing approach for topological disk meshes based on area-preserving parameterization. Conformal mapping and Möbius transformation are computed firstly as rough alignment. Then area preserving parameterization is computed via the discrete optimal mass transport map. Features are exactly aligned through radial basis functions. A surface remeshing scheme via Delaunay refinement algorithm is developed to create a new mesh connectivity. Experimental results demonstrate that the proposed method performs well and generates high-quality morphs.

Key words

mesh morphing area preserving parameterization Möbius transformation radial basis functions 

CLC number

TP 391.41 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alexa M. Recent advances in mesh morphing[J]. Computer Graphics Forum, 2002, 21(2): 173–198.CrossRefGoogle Scholar
  2. [2]
    Zhang L, Liu L, Ji Z, et al. Manifold Parameterization[M]. Berlin: Springer-Verlag, 2006: 160–171.Google Scholar
  3. [3]
    Yeh I, Lin C, Sorkine O, et al. Template-based 3d model fitting using dual-domain relaxation[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8): 1178–1190.CrossRefPubMedGoogle Scholar
  4. [4]
    Wu H, Pan C, Zha H, et al. Partwise cross-parameterization via nonregular convex hull domains[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(10): 1531–1544.CrossRefPubMedGoogle Scholar
  5. [5]
    Sumner R W, Popovic C J. Deformation transfer for triangle meshes[J]. ACM Transactions on Graphics (TOG), 2004, 23(3): 399–405.CrossRefGoogle Scholar
  6. [6]
    Kanai T, Suzuki H, Kimura F. Three-dimensional geometric metamorphosis based on harmonic maps[J]. The Visual Computer, 1998, 14(4): 166–176.CrossRefGoogle Scholar
  7. [7]
    Lee A W, Sweldens W, Schröder P, et al. MAPS: Multiresolution adaptive parameterization of surfaces[C] //Pro of the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1998: 95–104.Google Scholar
  8. [8]
    Lin C, Lee T. Metamorphosis of 3d polyhedral models using progressive connectivity transformations[J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(1): 2–12.CrossRefPubMedGoogle Scholar
  9. [9]
    Lin C, Lee T, Chu H, et al. Progressive mesh metamorphosis[ J]. Computer Animation and Virtual Worlds, 2005, 16(3-4): 487–498.CrossRefGoogle Scholar
  10. [10]
    Mocanu B, Zaharia T. A complete framework for 3D mesh morphing[C] //Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry. New York: ACM Press, 2012: 161–170.Google Scholar
  11. [11]
    Peng C, Timalsena S. Fast mapping and morphing for genus-zero meshes with cross spherical parameterization[J]. Computers and Graphics, 2016, 59: 107–118.CrossRefGoogle Scholar
  12. [12]
    Gregory A, State A, Lin M C, et al. Interactive surface decomposition for polyhedral morphing[J]. The Visual Computer, 1999, 15(9): 453–470.CrossRefGoogle Scholar
  13. [13]
    Kraevoy V, Sheffer A. Cross-parameterization and compatible remeshing of 3D models[J]. ACM Transactions on Graphics (TOG), 2004, 23(3): 861–869.CrossRefGoogle Scholar
  14. [14]
    Garner C, Jin M, Gu X, et al. Topology-driven surface mappings with robust feature alignment[C] //Vis 05 IEEE Visualization. Washington D C: IEEE, 2005: 543–550.Google Scholar
  15. [15]
    Litke N, Droske M, Rumpf M, et al. An image processing approach to surface matching[C] //Symposium on Geometry Processing. Washington D C: IEEE, 2005: 207–216.Google Scholar
  16. [16]
    Yueh M, Gu X D, Lin W, et al. Conformal surface morphing with applications on facial expressions[J/OL]. CoRR, arXivpreprint arXiv:1504.00097. 2015. Scholar
  17. [17]
    Sheffer A, Praun E, Rose K, et al. Mesh parameterization methods and their applications[J]. Foundations and Trends in Computer Graphics and Vision, 2007, 2(2): 105–171.CrossRefGoogle Scholar
  18. [18]
    Praun E, Hoppe H. Spherical parametrization and remeshing[ J]. ACM Transactions on Graphics (TOG), 2003, 22(3): 340–349.CrossRefGoogle Scholar
  19. [19]
    Mocanu B, Zaharia T. Direct spherical parameterization of 3D triangular meshes using local flattening operations [C]// Advances in Visual Computing. Berlin: Springer-Verlag, 2011: 607–618.CrossRefGoogle Scholar
  20. [20]
    Hu K, Yan D, Bommes D, et al. Error-bounded and feature preserving surface remeshing with minimal angle improvement [J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(12):2560–2573.CrossRefPubMedGoogle Scholar
  21. [21]
    Yang Y L, Guo R, Luo F, et al. Generalized discrete Ricci flow[J]. Computer Graphics Forum, 2009, 28(7): 2005–2014.CrossRefGoogle Scholar
  22. [22]
    Zou G, Hu J, Gu X, et al. Authalic parameterization of general surfaces using lie advection [J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2005–2014.CrossRefPubMedGoogle Scholar
  23. [23]
    Yoshizawa S, Belyaev A, Seidel H P. A fast and simple stretch-minimizing mesh parameterization [C] //Shape Modeling Applications Proceedings. Washington D C: IEEE, 2004: 200–208.Google Scholar
  24. [24]
    Monge G. M'emoire sur la th'eorie des d'eblais et des remblais[J]. Histoire de l′Acad′emie Royale des Sciences de Paris, avec les M′emoires de Math′ematiqueet de Physique pour la meme ann′ee, 1781: 666–704.Google Scholar
  25. [25]
    Kantorovich L V E. On a problem of Monge[J]. Uspekhi Mat Nauk, 1948, 3: 225–226.Google Scholar
  26. [26]
    Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions[J]. Communications on Pure & Applied Mathematics, 1991, 44(4): 375–417.CrossRefGoogle Scholar
  27. [27]
    Alexadrov A D. Convex Polyhedral [M]. Berlin: Springer-Verlag, 2005.Google Scholar
  28. [28]
    Aurenhammer F. Power diagrams: Properties, algorithms and applications[J]. Siam Journal on Computing, 1987, 16(1): 78–96.CrossRefGoogle Scholar
  29. [29]
    Gu X, Luo F, Sun J, et al. Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampere equations[J]. Asian Journal of Mathematics, 2016, 20(2): 383–398.CrossRefGoogle Scholar
  30. [30]
    Su K, Cui L, Qian K, et al. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation[J]. Computer Aided Geometric Design, 2016, 46: 76–91.CrossRefGoogle Scholar
  31. [31]
    Sieger D, Menzel S, Botsch M. RBF morphing techniques for simulation-based design optimization[J]. Engineering with Computers, 2014, 30(2): 161–174.CrossRefGoogle Scholar
  32. [32]
    Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1): 21–74.CrossRefGoogle Scholar
  33. [33]
    Solomon J, De Goes F, Peyre G, et al. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains[J]. ACM Transactions on Graphics (TOG), 2015, 34(4): 66.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ComputerWuhan UniversityWuhan, HubeiChina
  2. 2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhan, HubeiChina

Personalised recommendations