Wuhan University Journal of Natural Sciences

, Volume 23, Issue 1, pp 70–78 | Cite as

Quad-level cell NAND design and soft-bit generation for low-density parity-check decoding in system-level application

  • Shijun Liu
  • Xuecheng Zou
  • Baocun Wang
Physics and Biology


QLC (Quad-Level Cell) NAND flash will be one of the future technologies for next generation memory chip after three-dimensional (3D) TLC (Triple-Level Cell) stacked NAND flash. In QLC device, data errors will easily occur because of 24 data levels in the limited voltage range. This paper studies QLC NAND technology which is 4 bits per cell. QLC programming methods based on 16 voltage levels and reading method based on “half-change” Gray coding are researched. Because of the probable error impact of QLC NAND cell’s voltage change, the solution of generating the soft information after XOR (exclusive OR) the soft bits by internal read mechanism is presented for Low-Density Parity-Check (LDPC) Belief Propagation (BP) decoding in QLC design for its system level application.


QLC (Quad-Level Cell) NAND error-correcting code (ECC) Low-Density Parity-Check (LDPC) Soft-Bit Generation 

CLC number

TN 492 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Park K, Nam S, Kim D, et al. Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (1): 204–213.CrossRefGoogle Scholar
  2. [2]
    Kang D, Jeong W, Kim C, et al. 256Gb 3 b/cell V-NAND flash memory with 48 stacked WL layers[C] // IEEE International Solid-State Circuits Conference. New York: IEEE, 2016: 130–132.Google Scholar
  3. [3]
    Aritome S. NAND Flash memory revolution[C] // IEEE 8th International Memory Workshop. New York: IEEE, 2016: 1–4.Google Scholar
  4. [4]
    Lai S. Non-volatile memory technologies: The quest for ever lower cost[C] // IEEE International Electron Devices Meeting. New York: IEEE, 2008: 1–6.Google Scholar
  5. [5]
    Lim J Y, Moon P, Lee S M, et al. Analysis of intrinsic charge loss mechanisms for nanoscale NAND flash memory[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 319–325.CrossRefGoogle Scholar
  6. [6]
    Sandhya C, Oak A B, Chattar N, et al. Study of P/E cycling endurance induced degradation in SANOS memories under NAND (FN/FN) operation[J]. IEEE Transactions on Electron Devices, 2010, 57(7): 1548–1558.CrossRefGoogle Scholar
  7. [7]
    Chang Y M, Li Y C, Chang Y H, et al. On relaxing page program disturbance over 3D MLC flash memory[C] // IEEE/ACM International Conference on Computer-Aided Design. New York: IEEE, 2015: 479–486.Google Scholar
  8. [8]
    Kobayashi A, Watanabe H, Sakaki Y, et al. Investigation of read disturb error in 1Ynm NAND flash memories for system level solution[C] // IEEE International Reliability Physics Symposium. New York: IEEE, 2017: 1–4.Google Scholar
  9. [9]
    Deguchi Y, Tokutomi T, Takeuchi K. System-level error correction by read-disturb error model of 1Xnm TLC NAND flash memory for read-intensive enterprise solid-state drives (SSDs)[C] // IEEE International Reliability Physics Symposium. New York: IEEE, 2016: 1–4.Google Scholar
  10. [10]
    Cho S, Kim D, Choi J, et al. Block-wise concatenated BCH codes for NAND flash memories[J]. IEEE Transactions on Communications, 2014, 62(4): 1164–1177.CrossRefGoogle Scholar
  11. [11]
    Gallager R. Low-density parity-check codes[J]. IRE Transaction on Information Theory, 1962, 8(1): 21–28.CrossRefGoogle Scholar
  12. [12]
    Kim J H, Sung W Y. Rate-0.96LDPC decoding VLSI for soft-decision error correction of NAND flash memory[J]. IEEE Transactions on Very Large Scale Integration System, 2014, 22(5): 1004–1015.CrossRefGoogle Scholar
  13. [13]
    Kumara Y, Wavegedara C B. Improved LDPC decoding algorithms based on min-sum algorithm [C] // Moratuwa Engineering Research Conference. New York: IEEE, 2016: 108–113.Google Scholar
  14. [14]
    Howard S L, Gaudet V C, Schlegel C. Soft-bit decoding of regular low-density parity-check codes[J]. IEEE Transactions on Circuits and Systems, 2005, 52(10): 646–650.CrossRefGoogle Scholar
  15. [15]
    Bez R, Camerlenghi E, Modelli A, et al. Introduction to flash memory[J]. Proceedings of the IEEE, 2003, 91(4): 489–502.CrossRefGoogle Scholar
  16. [16]
    Jang J, Kim H S, Cho W, et al. Vertical cell array using TCAT (terabit cell array transistor) technology for ultrahigh density NAND flash memory[C] // IEEE Symposium on VLSI Technology. New York: IEEE, 2009: 192–193.Google Scholar
  17. [17]
    Lue H T, Hsu T H, Wang S Y, et al. Study of incremental step pulse programming (ISPP) and STI edge effect of BE-SONOS NAND flash[C] // IEEE 46th Annual International Reliability Physics Symposium. New York: IEEE, 2008: 693–694.Google Scholar
  18. [18]
    Arreghini A, Driussi F, Esseni D, et al. Experimental extraction of the charge centroid and of the charge type in the P/E operations of the SONOS memory cells[C] // International Electron Devices Meeting. New York: IEEE, 2006: 1–4.Google Scholar
  19. [19]
    Park H, Bersuker G, Gilmer D, et al. Charge loss in TANOS devices caused by Vt sensing measurements during retention[C] // IEEE International Memory Workshop. New York: IEEE, 2010: 1–2.Google Scholar
  20. [20]
    Kim J H, Cho J, Sung W Y. Error performance and decoder hardware comparison between EG-LDPC and BCH codes[C] // IEEE Workshop on Signal Processing Systems. New York: IEEE, 2010: 392–397.Google Scholar
  21. [21]
    Jose R, Pe A. Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN[C] // IEEE International Advance Computing Conference. New York: IEEE, 2015: 430–435.Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Optics and Electronic InformationHuazhong University of Science and TechnologyHubeiChina

Personalised recommendations