ZDM

pp 1–14 | Cite as

Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of-the-art

Survey Paper
  • 58 Downloads

Abstract

The teaching and learning of mathematical modelling is an important research field all over the world. In this paper we present a survey of the state-of-the-art on empirical studies in this field. We analyse the development of studies focusing on cognitive aspects of the promotion of modelling, i.e. the promotion of modelling abilities resp. skills, or in newer terminology, modelling competencies. Furthermore, we provide a literature search on the role of empirical research in important mathematics education journals and point out that this topic is only seldom treated in these journals. In addition, Proceedings of the conference series on the teaching and learning of mathematical modelling and applications were analysed in order to identify the role of empirical research in this important series and the kind of topics which are examined. The literature research points out the dominance of case study approaches and cognitively oriented studies compared to studies which used quantitative research methods or focused on affect-related issues. Finally, the papers in this special issue are described and developments and future prospects are identified.

References

  1. Achmetli, K., Schukajlow, S., & Krug, A. (2014). Effects of prompting students to use multiple solution methods while solving real-world problems on students’ self-regulation. In C. Nicol, S. Oesterle, P. Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 2, pp. 1–8). Vancouver, Canada: PME.Google Scholar
  2. Almeida, L. M. W. (2018). Considerations on the use of mathematics in modelling activities. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0902-4 (this issue).Google Scholar
  3. Alpers, B. (2017). The Mathematical Modelling Competencies Required for Solving Engineering Statics Assignments. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 189–199). Cham: Springer.CrossRefGoogle Scholar
  4. Ärlebäck, J. B., & Doerr, H. (2018). Students’ interpretations and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0881-5 (this issue).Google Scholar
  5. Barquero, B., Bosch, M., & Romo, A. (2018). Mathematical modelling in teacher education: Dealing with institutional constraints. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0907-z (this issue).Google Scholar
  6. Battista, M., Smith, M. S., Boerst, T., Sutton, J., Confrey, J., White, D., et al. (2009). Research in mathematics education: Multiple methods for multiple uses. Journal for Research in Mathematics Education, 40(3), 216–240.Google Scholar
  7. Berry, J. S., Burghes, D. N., Huntley, I. D., James, D. J., & Moscardini, A. O. (Eds.). (1984). Teaching and applying mathematical modelling. Chichester: Horwood.Google Scholar
  8. Berry, J. S., Burghes, D. N., Huntley, I. D., James, D.J.G., & Moscardini, A. O. (Eds.). (1986). Mathematical modelling methodology, models and micros. Chichester: Ellis Horwood.Google Scholar
  9. Berry, J. S., Burghes, D. N., Huntley, I. D., James, D.J.G., & Moscardini, A. O. (Eds.). (1987). Mathematical modelling courses. Chichester: Ellis Horwood.Google Scholar
  10. Besser, M., Blum, W., & Leiss, D. (2015). How to support teachers to give feedback to modelling tasks effectively? Results from a teacher-training-study in the Co2CA project. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 151–160). Cham: Springer.CrossRefGoogle Scholar
  11. Blomhøj, M., & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.CrossRefGoogle Scholar
  12. Blomhøj, M., & Højgaard Jensen, T. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). New York: Springer.CrossRefGoogle Scholar
  13. Blomhøj, M., & Kjeldsen, T. (2011). Students’ reflections in mathematical modelling projects. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 385–395). Dordrecht: Springer.CrossRefGoogle Scholar
  14. Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in the teaching and learning of mathematical modelling (pp. 15–30). Dodrecht: Springer.CrossRefGoogle Scholar
  15. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, What can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 73–96). Dodrecht: Springer.Google Scholar
  16. Blum, W., Berry, J. S., Biehler, R., Huntley, I. D., Kaiser-Messmer, G., & Profke, L. (Eds.). (1989). Applications and modelling in learning and teaching mathematics. Chichester: Ellis Horwood.Google Scholar
  17. Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education: The 14th ICMI study. New York: Springer.Google Scholar
  18. Blum, W., & Niss, M. (1989). Mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. In W. Blum, M. Niss & I. Huntley (Eds.), Modelling, applications and applied problem solving (pp. 1–21). Chichester: Ellis Horwood.Google Scholar
  19. Blum, W., & Schukajlow, S. (2018). Selbständiges Lernen mit Modellierungsaufgaben—Untersuchung von Lernumgebungen zum Modellieren im Projekt DISUM [Self-regulated learning using modelling problems—Investigation of learning enviorenments for modelling in the DISUM project]. In S. Schukajlow & W. Blum (Eds.), Evaluierte Lernumgebungen zum Modellieren [Evaluated learning environments for modelling] (pp. 51–72). Wiesbaden: Springer.CrossRefGoogle Scholar
  20. Borba, M. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM, 44(6), 801–814.CrossRefGoogle Scholar
  21. Brady, C. (2018). Modelling and the representational imagination. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0926-4 (this issue).Google Scholar
  22. Brown, J. P. (2015). Visualisation tactics for solving real world tasks. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 431–442). Cham: Springer.CrossRefGoogle Scholar
  23. Burkhardt, H. (2018). Ways to teach modelling—a 50 year study. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0899-8 (this issue).Google Scholar
  24. Cantoral, R., Moreno-Durazo, A., & Caballero-Pérez, M. (2018). Socioepistemological research on mathematical modelling: an empirical approach to teaching and learning. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0922-8 (this issue).Google Scholar
  25. Carreira, S., & Baioa, A. M. (2018). Mathematical modelling with hands-on experimental task—On the student’s sense of credibility. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0905-1 (this issue).Google Scholar
  26. Crouch, R., & Haines, C. (2007). Exemplar models: expert-novice student behaviours. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 90–109). Chichester: Ellis Horwood. Education, Engineering and Economics.CrossRefGoogle Scholar
  27. Csíkos, C., Szitányi, J., & Kelemen, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: a design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81(1), 47–65.CrossRefGoogle Scholar
  28. De Bock, D., Van Dooren, W., & Janssens, D. (2007). Studying and remedying students’ modelling competencies: Routine behaviour or adaptive expertise. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 241–248). New York, NY: Springer.CrossRefGoogle Scholar
  29. Degrande, T., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2018). Open word problems: taking the additive or the multiplicative road? ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0900-6 (this issue).Google Scholar
  30. Djepaxhija, B., Vos, P., & Fuglestad, A. B. (2017). Assessing mathematizing competences through multiple-choice tasks: Using students’ response processes to investigate task validity. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 601–611). Cham: Springer.CrossRefGoogle Scholar
  31. Engel, J., & Kuntze, S. (2011). From data to functions: Connecting modelling competencies and statistical literacy. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 397–406). Dordrecht: Springer.CrossRefGoogle Scholar
  32. English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 383–413). Rotterdam: Sense.CrossRefGoogle Scholar
  33. English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0896-y (this issue).Google Scholar
  34. Francis, B., & Hobbs, D. (1991). Enterprising mathematics: A Context-based course with context-based assessment. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 147–157). Chichester: Ellis Horwood.Google Scholar
  35. Frejd, P. (2013). Modes of modelling assessment. a literature review. Educational Studies in Mathematics, 84(3), 413–438.CrossRefGoogle Scholar
  36. Frejd, P., & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 407–416). Dordrecht: Springer.CrossRefGoogle Scholar
  37. Frejd, P., & Bergsten, C. (2018). Professional modellers’ conceptions of the notion of mathematical modelling—Ideas for education. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0928-2 (this issue).Google Scholar
  38. Galleguillos, J., & Borba, M. D. C. (2018). Expansive movements in the development of mathematical modelling: analysis from an activity theory perspective. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0903-3 (this issue).Google Scholar
  39. Geiger, V., & Frejd, P. (2015). A reflection on mathematical modelling and applications as a field of research: Theoretical orientation and diversity. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 161–171). Cham: Springer.CrossRefGoogle Scholar
  40. Geiger, V., Mulligan, J., Date-Huxtable, L., Ahlip, R., Jones, H., May, E. J., et al. (2018). An interdisciplinary approach to designing online learning: Fostering pre-service mathematics teachers’ capabilities in mathematical modelling. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0920-x (this issue).Google Scholar
  41. Gillespie, J. (1993). Numeracy to mathematics. In J. de Lange, I. Huntley, C. Keitel & M. Niss (Eds.), Innovation in maths education by modelling and applications (pp. 311–321). Chichester: Horwood.Google Scholar
  42. Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modelling with digital tools—A quantitative study on mathematising with dynamic geometry software. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0924-6 (this issue).Google Scholar
  43. Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 529–539). Cham: Springer.CrossRefGoogle Scholar
  44. Greer, B., & Verschaffel, L. (2007). Characterizing modeling competencies. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Applications and modelling in mathematics education: the 14th ICMI Study (pp. 219–224). New York: Springer.CrossRefGoogle Scholar
  45. Haines, C., & Crouch, R. (2006). Getting to grips with real world contexts: developing research in mathematical modeling. In M. Bosch (Ed.), CERME 4Conference of European research in mathematics education (pp. 1655–1665). Guixols, Spain: European Society for Research in Mathemaics Education.Google Scholar
  46. Haines, C., & Crouch, R. (2007). Mathematical modelling and applications: Ability and competence frameworks. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 417–424). New York, NY: Springer.CrossRefGoogle Scholar
  47. Haines, C., Crouch, R., & Davies, J. (2001). Understanding students’ modelling skills. In J. F. Matos, W. Blum, S. K. Houston & S. P. Carreira (Eds.), Modelling and mathematics education (pp. 366–380). Chichester: Horwood.CrossRefGoogle Scholar
  48. Haines, C., Galbraith, P., Blum, W., & Khan, S. (Eds.). (2007). Mathematical modelling (ICTMA 12): Education, engineering and economics. Chichester: Ellis Horwood.Google Scholar
  49. Haines, C., & Izard, J. (1995). Assessment in context for mathematical modelling. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 131–149). Yorklyn: Water Street Mathematics.Google Scholar
  50. Haines, C., Izard, J., & Le Masurier, D. (1993). Modelling intentions realised: Assessing the full range of developed skills. In T. Breiteig, I. Huntley & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 200–211). Chichester: Horwood.Google Scholar
  51. Hembree, R. (1992). Experiments and relational studies in problem solving: a meta-analysis. Journal for Research in Mathematics Education, 23(3), 242–273.CrossRefGoogle Scholar
  52. Henn, H.-W. (2011). Why cats happen to fall From the sky or on good and bad models. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 417–426). Dordrecht: Springer.CrossRefGoogle Scholar
  53. Henning, H., & Keune, M. (2006). Levels of modelling competence. In M. Bosch (Eds.), CERME 4. Proceedings of the Fourth Congress on the European Society for Research in Mathematics Education (pp. 1666–1674). San Feliude Guixols, Spain: European Society for Research in Mathematics Education.Google Scholar
  54. Henning, H., & Keune, M. (2007). Levels of modelling competencies. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 225–232). New York, NY: Springer.CrossRefGoogle Scholar
  55. Hernandez-Martinez, P., & Vos, P. (2018). “Why do I have to learn this?”—A case study on students’ experiences of the relevance of mathematical modelling activities. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0904-2 (this issue).Google Scholar
  56. Højgaard Jensen, T. (2007). Assessing mathematical modelling competency. In C. P. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 141–148). Chichester: Horwood.CrossRefGoogle Scholar
  57. Houston, K. (2007). Assessing the “phase” of mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 249–256). New York, NY: Springer.CrossRefGoogle Scholar
  58. Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107(2), 139–155.CrossRefGoogle Scholar
  59. Ikeda, T. (2013). Pedagogical reflections on the role of modelling in mathematics instruction. In G. Stillman, G. Kaiser, W. Blum & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 255–275). Dordrecht: Springer.CrossRefGoogle Scholar
  60. Ikeda, T. (2018). Evaluating student perceptions of the roles of mathematics in society following an experimental teaching program. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0927-3 (this issue).Google Scholar
  61. Izard, J. (2007). Assessing progress in mathematical modelling. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 158–167). Chichester: Ellis Horwood.CrossRefGoogle Scholar
  62. Jankvist, U. T., & Niss, M. (2015). A framework for designing a research-based “maths counsellor” teacher programme. Educational Studies in Mathematics, 90(3), 259–284.CrossRefGoogle Scholar
  63. Kaiser, G. (2017). The teaching and learning of mathematical modelling. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 267–291). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  64. Kaiser, G., Blum, W., Ferri, B., R., & Stillman, G. (2011). Trends in teaching and learning of mathematical modelling (ICTMA 14). Dordrecht: Springer.CrossRefGoogle Scholar
  65. Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 129–149). Cham: Springer.CrossRefGoogle Scholar
  66. Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.CrossRefGoogle Scholar
  67. Kaiser-Meßmer, G. (1986). Anwendungen im Mathematikunterricht. Band 2—Empirische Untersuchungen. Bad Salzdetfurth: Franzbecker.Google Scholar
  68. Kelle, U., & Buchholtz, N. (2015). The combination of qualitative and quantitative research methods in mathematics education: A “mixed methods” study on the development of the professional knowledge of teachers. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 321–361). Dordrecht: Springer.Google Scholar
  69. Krawitz, J., & Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0893-1 (this issue).Google Scholar
  70. Kreckler, J. (2017). Implementing modelling into classrooms: Results of an empirical research study. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 277–287). Cham: Springer.CrossRefGoogle Scholar
  71. Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142.CrossRefGoogle Scholar
  72. Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 63–78). Chichester: Ellis Horwood.CrossRefGoogle Scholar
  73. Maass, K., & Engeln, K. (2018). Impact of professional development involving modelling on teachers and their teaching. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0911-y (this issue).Google Scholar
  74. Matos, J., & Carreira, S. (1995). Cognitive processes and representations involved in applied problem solving. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 71–80). Yorklyn: Water Street Mathematics.Google Scholar
  75. Ng, K. E. D. (2018). Towards a professional development framework for mathematical modelling: the case of singapore teachers. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0910-z (this issue).Google Scholar
  76. Niss, M. (1993). Assessment of mathematical applications and modelling in mathematics teaching. In J. de Lange, C. Keitel, I. Huntley & M. Niss (Eds.), Innovation in mathematics education by modelling and applications (pp. 41–51). Chichester: Horwood.Google Scholar
  77. Nivens, R. A., & Otten, S. (2017). Assessing journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 348–368.CrossRefGoogle Scholar
  78. Plath, J., & Leiss, D. (2018). The impact of linguistic complexity on the solution of mathematical modelling tasks. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0897-x (this issue).Google Scholar
  79. Rakoczy, K., Harks, B., Klieme, E., Blum, W., & Hochweber, J. (2013). Written feedback in mathematics: Mediated by students’ perception, moderated by goal orientation. Learning and Instruction, 27, 63–73.CrossRefGoogle Scholar
  80. Reit, X.-R., & Ludwig, M. (2015). Thought structures as an instrument to determine the degree of difficulty of modelling tasks. In K. Krainer, & N. Vondrova (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (CERME9, 48 February 2015) (pp. 917–922). Prague, Czech Republic: Charles University in Prague, Faculty of Education and ERME.Google Scholar
  81. Robinson, D. H., Levin, J. R., Thomas, G. D., Pituch, K. A., & Vaughn, S. (2007). The incidence of “causal” statements in teaching-and-learning research journals. American Educational Research Journal, 44(2), 400–413.CrossRefGoogle Scholar
  82. Rodríguez Gallegos, R., & Quiroz Rivera, S. (2015). Developing modelling competencies through the use of technology. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 443–452). Cham: Springer.CrossRefGoogle Scholar
  83. Rosa, M., & Orey, D. C. (2015). Social-critical dimension of mathematical modelling. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 385–395). Cham: Springer.CrossRefGoogle Scholar
  84. Rosa, M., & Orey, D. C. (2018). Developing a mathematical modelling cource in a virtual learning environment. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0930-8 (this issue).Google Scholar
  85. Schukajlow, S., Kolter, J., & Blum, W. (2015a). Scaffolding mathematical modelling with a solution plan. ZDM, 47(7), 1241–1254.CrossRefGoogle Scholar
  86. Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while solving modelling problems. In A. M. Lindmeier, & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 177–184). Kiel, Germany: PME.Google Scholar
  87. Schukajlow, S., Krug, A., & Rakoczy, K. (2015b). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417.CrossRefGoogle Scholar
  88. Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79, 215–237.CrossRefGoogle Scholar
  89. Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: theoretical considerations and empirical contributions. ZDM, 49(3), 307–322.CrossRefGoogle Scholar
  90. Sevinc, S., & Lesh, R. (2018). Training mathematics teachers for realistic math problems: A case of modellingbased teacher education courses. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0898-9 (this issue).Google Scholar
  91. Stender, P. (2018). The use of heuristic strategies in modelling activities. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0901-5 (this issue).Google Scholar
  92. Stender, P., Krosanke, N., & Kaiser, G. (2017). Scaffolding complex modelling processes: An in-depth study. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 467–477). Cham: Springer.CrossRefGoogle Scholar
  93. Stillman, G. (1998). The emperor’s new clothes? Teaching and assessment of mathematical applicattions at the senior secondary level. In P. Galbraith, W. Blum, G. Booker & I. D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 243–253). Chichester: Horwood.Google Scholar
  94. Stylianides, A. J., & Stylianides, G. J. (2014). Impacting positively on students’ mathematical problem solving beliefs: An instructional intervention of short duration. The Journal of Mathematical Behavior, 33, 8–29.CrossRefGoogle Scholar
  95. Swan, M. (1991). Mathematical modelling for all. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 137–146). Chichester: Horwood.Google Scholar
  96. Tanner, H., & Jones, S. (1993). Developing metacognition through peer and self assessment. In T. Breiteig, I. Huntley & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 228–240). Chichester: Ellis Horwood.Google Scholar
  97. Tanner, H., & Jones, S. (1995). Developing metacognitive skills in mathematical modelling—A socio-constructivist interpretation. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 61–70). Yorklyn: Water Street Mathematics.Google Scholar
  98. Treilibs, V. (1979). Foundation processes in mathematical modelling. Unpublished Master of Philosophy, University of Nottingham.Google Scholar
  99. Tropper, N., Leiss, D., & Hänze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modelling. ZDM mathematics Education, 47(7), 1225–1240.CrossRefGoogle Scholar
  100. Usiskin, Z. (2007). The arithmetic operations as mathematical models. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 257–264). New York, NY: Springer.CrossRefGoogle Scholar
  101. Villa-Ochoa, J. A., & Berrío, M. J. (2015). Mathematical modelling and culture: An empirical study. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 241–250). Cham: Springer.CrossRefGoogle Scholar
  102. Villarreal, M. E. (2018). Pre-service teachers’ experiences within modelling scenarios enriched by digital technologies. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-018-0925-5 (this issue).Google Scholar
  103. Vorhölter, K. (2017). Measuring metacognitive modelling competencies. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 175–185). Cham: Springer.CrossRefGoogle Scholar
  104. Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: empirical verification of theoretical assumptions. ZDM Mathematics Education.  https://doi.org/10.1007/s11858-017-0909-x (this issue).Google Scholar
  105. Wake, G. (2015). Preparing for workplace numeracy: a modelling perspective. ZDM, 47(4), 675–689.CrossRefGoogle Scholar
  106. Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41–65.CrossRefGoogle Scholar
  107. Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT-approach. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 427–437). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MünsterMünsterGermany
  2. 2.Faculty of EducationUniversity of HamburgHamburgGermany
  3. 3.School of EducationAustralian Catholic UniversityBallaratAustralia

Personalised recommendations