Skip to main content

Advertisement

Log in

Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of-the-art

  • Survey Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The teaching and learning of mathematical modelling is an important research field all over the world. In this paper we present a survey of the state-of-the-art on empirical studies in this field. We analyse the development of studies focusing on cognitive aspects of the promotion of modelling, i.e. the promotion of modelling abilities resp. skills, or in newer terminology, modelling competencies. Furthermore, we provide a literature search on the role of empirical research in important mathematics education journals and point out that this topic is only seldom treated in these journals. In addition, Proceedings of the conference series on the teaching and learning of mathematical modelling and applications were analysed in order to identify the role of empirical research in this important series and the kind of topics which are examined. The literature research points out the dominance of case study approaches and cognitively oriented studies compared to studies which used quantitative research methods or focused on affect-related issues. Finally, the papers in this special issue are described and developments and future prospects are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achmetli, K., Schukajlow, S., & Krug, A. (2014). Effects of prompting students to use multiple solution methods while solving real-world problems on students’ self-regulation. In C. Nicol, S. Oesterle, P. Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 2, pp. 1–8). Vancouver, Canada: PME.

    Google Scholar 

  • Almeida, L. M. W. (2018). Considerations on the use of mathematics in modelling activities. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0902-4 (this issue).

    Article  Google Scholar 

  • Alpers, B. (2017). The Mathematical Modelling Competencies Required for Solving Engineering Statics Assignments. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 189–199). Cham: Springer.

    Chapter  Google Scholar 

  • Ärlebäck, J. B., & Doerr, H. (2018). Students’ interpretations and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0881-5 (this issue).

    Article  Google Scholar 

  • Barquero, B., Bosch, M., & Romo, A. (2018). Mathematical modelling in teacher education: Dealing with institutional constraints. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0907-z (this issue).

    Article  Google Scholar 

  • Battista, M., Smith, M. S., Boerst, T., Sutton, J., Confrey, J., White, D., et al. (2009). Research in mathematics education: Multiple methods for multiple uses. Journal for Research in Mathematics Education, 40(3), 216–240.

    Google Scholar 

  • Berry, J. S., Burghes, D. N., Huntley, I. D., James, D. J., & Moscardini, A. O. (Eds.). (1984). Teaching and applying mathematical modelling. Chichester: Horwood.

    Google Scholar 

  • Berry, J. S., Burghes, D. N., Huntley, I. D., James, D.J.G., & Moscardini, A. O. (Eds.). (1986). Mathematical modelling methodology, models and micros. Chichester: Ellis Horwood.

    Google Scholar 

  • Berry, J. S., Burghes, D. N., Huntley, I. D., James, D.J.G., & Moscardini, A. O. (Eds.). (1987). Mathematical modelling courses. Chichester: Ellis Horwood.

    Google Scholar 

  • Besser, M., Blum, W., & Leiss, D. (2015). How to support teachers to give feedback to modelling tasks effectively? Results from a teacher-training-study in the Co2CA project. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 151–160). Cham: Springer.

    Chapter  Google Scholar 

  • Blomhøj, M., & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.

    Article  Google Scholar 

  • Blomhøj, M., & Højgaard Jensen, T. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). New York: Springer.

    Chapter  Google Scholar 

  • Blomhøj, M., & Kjeldsen, T. (2011). Students’ reflections in mathematical modelling projects. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 385–395). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in the teaching and learning of mathematical modelling (pp. 15–30). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, What can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 73–96). Dodrecht: Springer.

    Google Scholar 

  • Blum, W., Berry, J. S., Biehler, R., Huntley, I. D., Kaiser-Messmer, G., & Profke, L. (Eds.). (1989). Applications and modelling in learning and teaching mathematics. Chichester: Ellis Horwood.

    Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education: The 14th ICMI study. New York: Springer.

    Google Scholar 

  • Blum, W., & Niss, M. (1989). Mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. In W. Blum, M. Niss & I. Huntley (Eds.), Modelling, applications and applied problem solving (pp. 1–21). Chichester: Ellis Horwood.

    Google Scholar 

  • Blum, W., & Schukajlow, S. (2018). Selbständiges Lernen mit Modellierungsaufgaben—Untersuchung von Lernumgebungen zum Modellieren im Projekt DISUM [Self-regulated learning using modelling problems—Investigation of learning enviorenments for modelling in the DISUM project]. In S. Schukajlow & W. Blum (Eds.), Evaluierte Lernumgebungen zum Modellieren [Evaluated learning environments for modelling] (pp. 51–72). Wiesbaden: Springer.

    Chapter  Google Scholar 

  • Borba, M. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM, 44(6), 801–814.

    Article  Google Scholar 

  • Brady, C. (2018). Modelling and the representational imagination. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0926-4 (this issue).

    Article  Google Scholar 

  • Brown, J. P. (2015). Visualisation tactics for solving real world tasks. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 431–442). Cham: Springer.

    Chapter  Google Scholar 

  • Burkhardt, H. (2018). Ways to teach modelling—a 50 year study. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0899-8 (this issue).

    Article  Google Scholar 

  • Cantoral, R., Moreno-Durazo, A., & Caballero-Pérez, M. (2018). Socioepistemological research on mathematical modelling: an empirical approach to teaching and learning. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0922-8 (this issue).

    Article  Google Scholar 

  • Carreira, S., & Baioa, A. M. (2018). Mathematical modelling with hands-on experimental task—On the student’s sense of credibility. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0905-1 (this issue).

    Article  Google Scholar 

  • Crouch, R., & Haines, C. (2007). Exemplar models: expert-novice student behaviours. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 90–109). Chichester: Ellis Horwood. Education, Engineering and Economics.

    Chapter  Google Scholar 

  • Csíkos, C., Szitányi, J., & Kelemen, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: a design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81(1), 47–65.

    Article  Google Scholar 

  • De Bock, D., Van Dooren, W., & Janssens, D. (2007). Studying and remedying students’ modelling competencies: Routine behaviour or adaptive expertise. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 241–248). New York, NY: Springer.

    Chapter  Google Scholar 

  • Degrande, T., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2018). Open word problems: taking the additive or the multiplicative road? ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0900-6 (this issue).

    Article  Google Scholar 

  • Djepaxhija, B., Vos, P., & Fuglestad, A. B. (2017). Assessing mathematizing competences through multiple-choice tasks: Using students’ response processes to investigate task validity. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 601–611). Cham: Springer.

    Chapter  Google Scholar 

  • Engel, J., & Kuntze, S. (2011). From data to functions: Connecting modelling competencies and statistical literacy. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 397–406). Dordrecht: Springer.

    Chapter  Google Scholar 

  • English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 383–413). Rotterdam: Sense.

    Chapter  Google Scholar 

  • English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0896-y (this issue).

    Article  Google Scholar 

  • Francis, B., & Hobbs, D. (1991). Enterprising mathematics: A Context-based course with context-based assessment. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 147–157). Chichester: Ellis Horwood.

    Google Scholar 

  • Frejd, P. (2013). Modes of modelling assessment. a literature review. Educational Studies in Mathematics, 84(3), 413–438.

    Article  Google Scholar 

  • Frejd, P., & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 407–416). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Frejd, P., & Bergsten, C. (2018). Professional modellers’ conceptions of the notion of mathematical modelling—Ideas for education. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0928-2 (this issue).

    Article  Google Scholar 

  • Galleguillos, J., & Borba, M. D. C. (2018). Expansive movements in the development of mathematical modelling: analysis from an activity theory perspective. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0903-3 (this issue).

    Article  Google Scholar 

  • Geiger, V., & Frejd, P. (2015). A reflection on mathematical modelling and applications as a field of research: Theoretical orientation and diversity. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 161–171). Cham: Springer.

    Chapter  Google Scholar 

  • Geiger, V., Mulligan, J., Date-Huxtable, L., Ahlip, R., Jones, H., May, E. J., et al. (2018). An interdisciplinary approach to designing online learning: Fostering pre-service mathematics teachers’ capabilities in mathematical modelling. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0920-x (this issue).

    Article  Google Scholar 

  • Gillespie, J. (1993). Numeracy to mathematics. In J. de Lange, I. Huntley, C. Keitel & M. Niss (Eds.), Innovation in maths education by modelling and applications (pp. 311–321). Chichester: Horwood.

    Google Scholar 

  • Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modelling with digital tools—A quantitative study on mathematising with dynamic geometry software. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0924-6 (this issue).

    Article  Google Scholar 

  • Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 529–539). Cham: Springer.

    Chapter  Google Scholar 

  • Greer, B., & Verschaffel, L. (2007). Characterizing modeling competencies. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Applications and modelling in mathematics education: the 14th ICMI Study (pp. 219–224). New York: Springer.

    Chapter  Google Scholar 

  • Haines, C., & Crouch, R. (2006). Getting to grips with real world contexts: developing research in mathematical modeling. In M. Bosch (Ed.), CERME 4Conference of European research in mathematics education (pp. 1655–1665). Guixols, Spain: European Society for Research in Mathemaics Education.

    Google Scholar 

  • Haines, C., & Crouch, R. (2007). Mathematical modelling and applications: Ability and competence frameworks. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 417–424). New York, NY: Springer.

    Chapter  Google Scholar 

  • Haines, C., Crouch, R., & Davies, J. (2001). Understanding students’ modelling skills. In J. F. Matos, W. Blum, S. K. Houston & S. P. Carreira (Eds.), Modelling and mathematics education (pp. 366–380). Chichester: Horwood.

    Chapter  Google Scholar 

  • Haines, C., Galbraith, P., Blum, W., & Khan, S. (Eds.). (2007). Mathematical modelling (ICTMA 12): Education, engineering and economics. Chichester: Ellis Horwood.

    Google Scholar 

  • Haines, C., & Izard, J. (1995). Assessment in context for mathematical modelling. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 131–149). Yorklyn: Water Street Mathematics.

    Google Scholar 

  • Haines, C., Izard, J., & Le Masurier, D. (1993). Modelling intentions realised: Assessing the full range of developed skills. In T. Breiteig, I. Huntley & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 200–211). Chichester: Horwood.

    Google Scholar 

  • Hembree, R. (1992). Experiments and relational studies in problem solving: a meta-analysis. Journal for Research in Mathematics Education, 23(3), 242–273.

    Article  Google Scholar 

  • Henn, H.-W. (2011). Why cats happen to fall From the sky or on good and bad models. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 417–426). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Henning, H., & Keune, M. (2006). Levels of modelling competence. In M. Bosch (Eds.), CERME 4. Proceedings of the Fourth Congress on the European Society for Research in Mathematics Education (pp. 1666–1674). San Feliude Guixols, Spain: European Society for Research in Mathematics Education.

  • Henning, H., & Keune, M. (2007). Levels of modelling competencies. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 225–232). New York, NY: Springer.

    Chapter  Google Scholar 

  • Hernandez-Martinez, P., & Vos, P. (2018). “Why do I have to learn this?”—A case study on students’ experiences of the relevance of mathematical modelling activities. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0904-2 (this issue).

    Article  Google Scholar 

  • Højgaard Jensen, T. (2007). Assessing mathematical modelling competency. In C. P. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 141–148). Chichester: Horwood.

    Chapter  Google Scholar 

  • Houston, K. (2007). Assessing the “phase” of mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 249–256). New York, NY: Springer.

    Chapter  Google Scholar 

  • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107(2), 139–155.

    Article  Google Scholar 

  • Ikeda, T. (2013). Pedagogical reflections on the role of modelling in mathematics instruction. In G. Stillman, G. Kaiser, W. Blum & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 255–275). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ikeda, T. (2018). Evaluating student perceptions of the roles of mathematics in society following an experimental teaching program. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0927-3 (this issue).

    Article  Google Scholar 

  • Izard, J. (2007). Assessing progress in mathematical modelling. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 158–167). Chichester: Ellis Horwood.

    Chapter  Google Scholar 

  • Jankvist, U. T., & Niss, M. (2015). A framework for designing a research-based “maths counsellor” teacher programme. Educational Studies in Mathematics, 90(3), 259–284.

    Article  Google Scholar 

  • Kaiser, G. (2017). The teaching and learning of mathematical modelling. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 267–291). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Kaiser, G., Blum, W., Ferri, B., R., & Stillman, G. (2011). Trends in teaching and learning of mathematical modelling (ICTMA 14). Dordrecht: Springer.

    Book  Google Scholar 

  • Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 129–149). Cham: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.

    Article  Google Scholar 

  • Kaiser-Meßmer, G. (1986). Anwendungen im Mathematikunterricht. Band 2—Empirische Untersuchungen. Bad Salzdetfurth: Franzbecker.

    Google Scholar 

  • Kelle, U., & Buchholtz, N. (2015). The combination of qualitative and quantitative research methods in mathematics education: A “mixed methods” study on the development of the professional knowledge of teachers. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 321–361). Dordrecht: Springer.

    Google Scholar 

  • Krawitz, J., & Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0893-1 (this issue).

    Article  Google Scholar 

  • Kreckler, J. (2017). Implementing modelling into classrooms: Results of an empirical research study. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 277–287). Cham: Springer.

    Chapter  Google Scholar 

  • Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142.

    Article  Google Scholar 

  • Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 63–78). Chichester: Ellis Horwood.

    Chapter  Google Scholar 

  • Maass, K., & Engeln, K. (2018). Impact of professional development involving modelling on teachers and their teaching. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0911-y (this issue).

    Article  Google Scholar 

  • Matos, J., & Carreira, S. (1995). Cognitive processes and representations involved in applied problem solving. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 71–80). Yorklyn: Water Street Mathematics.

    Google Scholar 

  • Ng, K. E. D. (2018). Towards a professional development framework for mathematical modelling: the case of singapore teachers. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0910-z (this issue).

    Article  Google Scholar 

  • Niss, M. (1993). Assessment of mathematical applications and modelling in mathematics teaching. In J. de Lange, C. Keitel, I. Huntley & M. Niss (Eds.), Innovation in mathematics education by modelling and applications (pp. 41–51). Chichester: Horwood.

    Google Scholar 

  • Nivens, R. A., & Otten, S. (2017). Assessing journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 348–368.

    Article  Google Scholar 

  • Plath, J., & Leiss, D. (2018). The impact of linguistic complexity on the solution of mathematical modelling tasks. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0897-x (this issue).

    Article  Google Scholar 

  • Rakoczy, K., Harks, B., Klieme, E., Blum, W., & Hochweber, J. (2013). Written feedback in mathematics: Mediated by students’ perception, moderated by goal orientation. Learning and Instruction, 27, 63–73.

    Article  Google Scholar 

  • Reit, X.-R., & Ludwig, M. (2015). Thought structures as an instrument to determine the degree of difficulty of modelling tasks. In K. Krainer, & N. Vondrova (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (CERME9, 48 February 2015) (pp. 917–922). Prague, Czech Republic: Charles University in Prague, Faculty of Education and ERME.

    Google Scholar 

  • Robinson, D. H., Levin, J. R., Thomas, G. D., Pituch, K. A., & Vaughn, S. (2007). The incidence of “causal” statements in teaching-and-learning research journals. American Educational Research Journal, 44(2), 400–413.

    Article  Google Scholar 

  • Rodríguez Gallegos, R., & Quiroz Rivera, S. (2015). Developing modelling competencies through the use of technology. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 443–452). Cham: Springer.

    Chapter  Google Scholar 

  • Rosa, M., & Orey, D. C. (2015). Social-critical dimension of mathematical modelling. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 385–395). Cham: Springer.

    Chapter  Google Scholar 

  • Rosa, M., & Orey, D. C. (2018). Developing a mathematical modelling cource in a virtual learning environment. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0930-8 (this issue).

    Article  Google Scholar 

  • Schukajlow, S., Kolter, J., & Blum, W. (2015a). Scaffolding mathematical modelling with a solution plan. ZDM, 47(7), 1241–1254.

    Article  Google Scholar 

  • Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while solving modelling problems. In A. M. Lindmeier, & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 177–184). Kiel, Germany: PME.

    Google Scholar 

  • Schukajlow, S., Krug, A., & Rakoczy, K. (2015b). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417.

    Article  Google Scholar 

  • Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79, 215–237.

    Article  Google Scholar 

  • Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: theoretical considerations and empirical contributions. ZDM, 49(3), 307–322.

    Article  Google Scholar 

  • Sevinc, S., & Lesh, R. (2018). Training mathematics teachers for realistic math problems: A case of modellingbased teacher education courses. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0898-9 (this issue).

    Article  Google Scholar 

  • Stender, P. (2018). The use of heuristic strategies in modelling activities. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0901-5 (this issue).

    Article  Google Scholar 

  • Stender, P., Krosanke, N., & Kaiser, G. (2017). Scaffolding complex modelling processes: An in-depth study. In G. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 467–477). Cham: Springer.

    Chapter  Google Scholar 

  • Stillman, G. (1998). The emperor’s new clothes? Teaching and assessment of mathematical applicattions at the senior secondary level. In P. Galbraith, W. Blum, G. Booker & I. D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 243–253). Chichester: Horwood.

    Google Scholar 

  • Stylianides, A. J., & Stylianides, G. J. (2014). Impacting positively on students’ mathematical problem solving beliefs: An instructional intervention of short duration. The Journal of Mathematical Behavior, 33, 8–29.

    Article  Google Scholar 

  • Swan, M. (1991). Mathematical modelling for all. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 137–146). Chichester: Horwood.

    Google Scholar 

  • Tanner, H., & Jones, S. (1993). Developing metacognition through peer and self assessment. In T. Breiteig, I. Huntley & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 228–240). Chichester: Ellis Horwood.

    Google Scholar 

  • Tanner, H., & Jones, S. (1995). Developing metacognitive skills in mathematical modelling—A socio-constructivist interpretation. In C. Sloyer, W. Blum & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 61–70). Yorklyn: Water Street Mathematics.

    Google Scholar 

  • Treilibs, V. (1979). Foundation processes in mathematical modelling. Unpublished Master of Philosophy, University of Nottingham.

  • Tropper, N., Leiss, D., & Hänze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modelling. ZDM mathematics Education, 47(7), 1225–1240.

    Article  Google Scholar 

  • Usiskin, Z. (2007). The arithmetic operations as mathematical models. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 257–264). New York, NY: Springer.

    Chapter  Google Scholar 

  • Villa-Ochoa, J. A., & Berrío, M. J. (2015). Mathematical modelling and culture: An empirical study. In G. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences (pp. 241–250). Cham: Springer.

    Chapter  Google Scholar 

  • Villarreal, M. E. (2018). Pre-service teachers’ experiences within modelling scenarios enriched by digital technologies. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0925-5 (this issue).

    Article  Google Scholar 

  • Vorhölter, K. (2017). Measuring metacognitive modelling competencies. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 175–185). Cham: Springer.

    Chapter  Google Scholar 

  • Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: empirical verification of theoretical assumptions. ZDM Mathematics Education. https://doi.org/10.1007/s11858-017-0909-x (this issue).

    Article  Google Scholar 

  • Wake, G. (2015). Preparing for workplace numeracy: a modelling perspective. ZDM, 47(4), 675–689.

    Article  Google Scholar 

  • Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41–65.

    Article  Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT-approach. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 427–437). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schukajlow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schukajlow, S., Kaiser, G. & Stillman, G. Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of-the-art. ZDM Mathematics Education 50, 5–18 (2018). https://doi.org/10.1007/s11858-018-0933-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0933-5

Keywords

Navigation