Algebraic characterisation of relatively hyperbolic special groups

Abstract

This article is dedicated to the characterisation of the relative hyperbolicity of Haglund and Wise’s special groups. More precisely, we introduce a new combinatorial formalism to study (virtually) special groups, and we prove that, given a cocompact special group G and a finite collection of subgroups \({\cal H}\), then G is hyperbolic relative to \({\cal H}\) if and only if (i) each subgroup of \({\cal H}\) is convex-cocompact, (ii) \({\cal H}\) is an almost malnormal collection, and (iii) every non-virtually cyclic abelian subgroup of G is contained in a conjugate of some group of \({\cal H}\). As an application, we show that a virtually cocompact special group is hyperbolic relative to abelian subgroups if and only if it does not contain \({\mathbb{F}_2} \times \mathbb{Z} \).

This is a preview of subscription content, access via your institution.

References

  1. [Ago13]

    I. Agol, The virtual Haken conjecture, Documenta Mathematica 18 (2013), 1045–1087.

    MathSciNet  MATH  Google Scholar 

  2. [Ali05]

    E. Alibegović, A combination theorem for relatively hyperbolic groups, Bulletin of the London Mathematical Society 37 (2005), 459–466.

    MathSciNet  MATH  Article  Google Scholar 

  3. [Bau81]

    A. Baudisch, Subgroups of semifree groups, Acta Mathematica. Academiae Scientiarum Hungaricae 38 (1981), 19–28.

    MathSciNet  Article  Google Scholar 

  4. [BH99]

    M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer, Berlin, 1999.

    Google Scholar 

  5. [BHS17]

    J. Behrstock, M. Hagen and A. Sisto, Thickness, relative hyperbolicity, and randomness in Coxeter groups, Algebraic & Geometric Topology 17 (2017), 705–740.

    MathSciNet  MATH  Article  Google Scholar 

  6. [BM97]

    M. Burger and S. Mozes, Finitely presented simple groups and products of trees, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 324 (1997), 747–752.

    MathSciNet  MATH  Google Scholar 

  7. [BM04]

    E. Bunina and A. Mikhalev, Elementary properties of linear groups and related problems, Journal of Mathematical Sciences 123 (2004), 3921–3985.

    MathSciNet  MATH  Article  Google Scholar 

  8. [Bow12]

    B. Bowditch, Relatively hyperbolic groups, International Journal of Algebra and Computation 22 (2012), Article no. 1250016.

  9. [Bro06]

    R. Brown, Topology and Groupoids, BookSurge, Charleston, SC, 2006.

    Google Scholar 

  10. [Cap09]

    P.-E. Caprace, Buildings with isolated subspaces and relatively hyperbolic Coxeter groups, Innovations in Incidence Geometry 10 (2009), 15–31.

    MathSciNet  MATH  Article  Google Scholar 

  11. [CDE+]

    V. Chepoi, F. Dragan, B. Estellon, M. Habib and Y. Vaxès, Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs, in Computational Geometry (SCG’2008), ACM, New York, 2008, pp. 59–68.

    Google Scholar 

  12. [CG05]

    C. Champetier and V. Guirardel, Limit groups as limits of free groups, Israel Journal of Mathematics 146 (2005), 1–75.

    MathSciNet  MATH  Article  Google Scholar 

  13. [CH09]

    P.-E. Caprace and F. Haglund, On geometric flats in CAT(0) realization of Coxeter groups and Tits buildings, Canadian Journal of Mathematics 61 (2009), 740–761.

    MathSciNet  MATH  Article  Google Scholar 

  14. [Che00]

    V. Chepoi, Graphs of some CAT(0) complexes, Advances in Applied Mathematics 24 (2000), 125–179.

    MathSciNet  MATH  Article  Google Scholar 

  15. [CS15]

    R. Charney and H. Sultan, Contracting boundaries of CAT(0) spaces, Journal of Topology 8 (2015), 93–117.

    MathSciNet  MATH  Article  Google Scholar 

  16. [Dah03]

    F. Dahmani, Combination of convergence groups, Geometry & Topology 7 (2003), 933–963.

    MathSciNet  MATH  Article  Google Scholar 

  17. [DS05]

    C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), 959–1058.

    MathSciNet  MATH  Article  Google Scholar 

  18. [DS08]

    C. Druţu and M. Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups, Advances in Mathematics 217 (2008), 1313–1367.

    MathSciNet  MATH  Article  Google Scholar 

  19. [GdlH90]

    E. Ghys and P. de la Harpe, Sur les groupes hyperbolic d’après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, Boston, MA, 1990.

    Google Scholar 

  20. [Gen16a]

    A. Genevois, Coning-off CAT(0) cube complexes, https://arxiv.org/abs/1603.06513.

  21. [Gen17a]

    A. Genevois, Cubical-like geometry of quasi-median graphs and applications to geometric group theory, PhD. thesis, University of Marseille, 2017.

  22. [Gen17b]

    A. Genevois, Hyperbolic diagram groups are free, Geometriae Dedicata 188 (2017), 33–50.

    MathSciNet  MATH  Article  Google Scholar 

  23. [Gen18]

    A. Genevois, Hyperplanes of Squier’s cube complexes, Algebraic & Geometric Topology 18 (2018), 3205–3256.

    MathSciNet  MATH  Article  Google Scholar 

  24. [Gen20]

    A. Genevois, Contracting isometries of CAT(0) cube complexes and acylindrical hyperbolicity of diagram groups, Algebraic & Geometric Topology 20 (2020), 49–134.

    MathSciNet  MATH  Article  Google Scholar 

  25. [Gre90]

    E. Green, Graph products of groups, PhD. thesis, University of Leeds, 1990.

  26. [Gro87]

    M. Gromov, Hyperbolic groups, in Essays in Group Theory, Mathematical Sciences Research Institute Publications, Vol. 8, Springer, New York, 1987, pp. 75–263.

    Google Scholar 

  27. [Gro05]

    D. Groves, Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams, Geometry and Topology 9 (2005), 2319–2358.

    MathSciNet  MATH  Article  Google Scholar 

  28. [Gro09]

    D. Groves, Limit groups for relatively hyperbolic groups, I: The basic tools, Algebraic & Geometric Topology 9 (2009), 1423–1466.

    MathSciNet  MATH  Article  Google Scholar 

  29. [GS97]

    V. Guba and M. Sapir, Diagram groups, Memoirs of the American Mathematical Society 130 (1997).

  30. [HK05]

    C. Hruska and B. Kleiner, Hadamard spaces with isolated flats, Geometry and Topology 9 (2005), 1501–1538.

    MathSciNet  MATH  Article  Google Scholar 

  31. [HK09]

    C. Hruska and B. Kleiner, Erratum to: “Hadamard spaces with isolated flats” [Geom. Topol. 9 (2005), 1501–1538; mr2175151], Geometry and Topology 13 (2009), 699–707.

  32. [Hru10]

    C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebraic & Geometric Topology 10 (2010), 1807–1856.

    MathSciNet  MATH  Article  Google Scholar 

  33. [HW08a]

    F. Haglund and D. Wise, Special cube complexes, Geometric and Functional Analysis 17 (2008), 1551–1620.

    MathSciNet  MATH  Article  Google Scholar 

  34. [HW08b]

    G. Hruska and D. Wise, Packing subgroups in relatively hyperbolic groups, Geometry and Topology 13 (2008), 1945–1988.

  35. [Mul80]

    H. M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts, Vol. 132, Mathematisch Centrum, Amsterdam, 1980.

    Google Scholar 

  36. [NTY14]

    Y. Nakagawa, M. Tamura and Y. Yamashita, Non-hyperbolic automatic groups and groups acting on CAT(0) cube complexes, International Journal of Algebra and Computation 24 (2014), 795–813.

    MathSciNet  MATH  Article  Google Scholar 

  37. [Osi06]

    D. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs of the American Mathematical Society 179 (2006).

  38. [Sag95]

    M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proceedings of the London Mathematical Society 71 (1995), 585–617.

    MathSciNet  MATH  Article  Google Scholar 

  39. [Ser89]

    H. Servatius, Automorphisms of graph groups, Journal of Algebra 126 (1989), 34–60.

    MathSciNet  MATH  Article  Google Scholar 

  40. [SW11]

    M. Sageev and D. Wise, Periodic flats in CAT(0) cube complexes, Algebraic & Geometric Topology 11 (2011), 1793–1820.

    MathSciNet  MATH  Article  Google Scholar 

  41. [SW15]

    M. Sageev and D. Wise, Cores for quasiconvex actions, Proceedings of the American Mathematical Society 143 (2015), 2731–2741.

    MathSciNet  MATH  Article  Google Scholar 

  42. [Wis]

    D. Wise, The structure of groups with a quasiconvex hierarchy, preprint.

  43. [Woo17]

    D. Woodhouse, A generalized axis theorem for cube complexes, Algebraic & Geometric Topology 17 (2017), 2737–2751.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony Genevois.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Genevois, A. Algebraic characterisation of relatively hyperbolic special groups. Isr. J. Math. (2021). https://doi.org/10.1007/s11856-021-2097-1

Download citation