Skip to main content
Log in

Floating functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce floating bodies for convex, not necessarily bounded subsets of ℝn. This allows us to define floating functions for convex and log-concave functions and log-concave measures. We establish the asymptotic behavior of the integral difference of a log-concave function and its floating function. This gives rise to a new affine invariant which bears striking similarities to the Euclidean affine surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Alexandroff, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningradskiĭ Gosudarstvennyĭ Universitet Uchneye Zapiski. Seria Matematicheskaya 6 (1939), 3–35.

    MathSciNet  Google Scholar 

  2. B. Andrews, The affine curve-lengthening flow, Journal für die Reine und Angewandte Mathematik 506 (1999), 43–83.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Andrews, Gauss curvature flow: the fate of the rolling stones, Inventiones Mathematicae 138 (1999), 151–161.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Artstein-Avidan, B. Klartag and V. Milman, The Santaló point of a function, and a functional form of Santaló inequality, Mathematika 51 (2004), 33–48.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Artstein-Avidan and V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform, Annals of Mathematics 169 (2009), 661–674.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Artstein-Avidan, B. Klartag, C. Schütt and E. M. Werner, Functional affineisoperimetry and an inverse logarithmic Sobolev inequality, Journal of Functional Analysis 262 (2012), 4181–4204.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Ball, Isometric problems in ℓp and sections of convex sets, PhD. dissertation, University of Cambridge, 1986.

    Google Scholar 

  8. I. Bárány and D. G. Larman, Convex bodies, economic cap coverings, random polytopes, Mathematika 35 (1988), 274–291.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Besau and E. M. Werner, The spherical convex floating body, Advances in Mathematics 301 (2016), 867–901.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Besau and E. M. Werner, The floating body in real space forms, Journal of Differential Geometry 110 (2018), 187–220.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Besau, M. Ludwig and E. M. Werner, Weighted floating bodies and polytopal approximation, Transactions of the American Mathematical Society 370 (2018), 7129–7148.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Blaschke, Vorlesung Über Differentialgeometrie II: Affine Differentialgeometrie, Springer, Berlin, 1923.

    MATH  Google Scholar 

  13. J. M. Borwein and J. D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterexamples, Encyclopedia of Mathematics and its Applications, Vol. 109, Cambridge University Press, Cambridge, 2010.

  14. K. Böröczky Jr., Approximation of general smooth convex bodies, Advances in Mathematics 153 (2000), 325–341.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem, Journal of the American Mathematical Society 26 (2013), 831–852.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Böröczky and M. Ludwig, Minkowski valuations on lattice polytopes, Journal of the European Mathematical Society 21 (2019), 163–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Mathematica 66 (1935), 1–47.

    Article  MATH  Google Scholar 

  18. U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schütt and E. M. Werner, Functional versions of Lp-affine surface area and entropy inequalities, International Mathematics Research Notices 4 (2016), 1223–1250.

    Article  MATH  Google Scholar 

  19. U. Caglar and E. M. Werner, Divergence for s-concave and log-concave functions, Advances in Mathematics 257 (2014), 219–247.

    Article  MathSciNet  MATH  Google Scholar 

  20. U. Caglar and E. M. Werner, Mixed f-divergence and inequalities for log-concave functions, Proceedings of the London Mathematical Society 110 (2015), 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Fleury, O. Guédon and G. Paouris, A stability result for mean width of Lp-centroid bodies, Advances in Mathematics 214 (2007), 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Fradelizi and M. Meyer, Some functional forms of Blaschke–Santaló inequality, Mathematische Zeitschrift 256 (2007), 379–395.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. J. Gardner, The Brunn–Minkowski inequality, Bulletin of the American Mathematical Society 39 (2002), 355–405.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications, Vol. 58, Cambridge University Press, Cambridge, 2006.

  25. R. J. Gardner, D. Hug and W. Weil, The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities, Journal of Differential Geometry 97 (2014), 427–476.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Grote and E. M. Werner, Approximation of smooth convex bodies by random polytopes, Electronic Journal of Probability 23 (2018), Paper No. 9.

  27. C. Haberl, Minkowski valuations intertwining the special linear group, Journal of the European Mathematical Society 14 (2012), 565–1597.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Haberl and L. Parapatits, The centro-affine Hadwiger theorem, Journal of the American Mathematical Society 27 (2014), 685–705.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Haberl and F. E. Schuster, General L p affine isoperimetric inequalities, Journal of Differential Geometry 83 (2009), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Huang, E. Lutwak, D. Yang and G. Zhang, Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems, Acta Mathematica 216 (2016), 325–388.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. N. Ivaki, Convex bodies with pinched Mahler volume under the centro-affine normal flows, Calculus of Variations and Partial Differential Equations 54 (2015), 831–846.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. N. Ivaki and A. Stancu, Volume preserving centro-affine normal flows, Communications in Analyis and Geometry 21 (2013), 671–685.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Lehec, Partitions and functional Santaló inequalities, Archiv der Mathematik 92 (2009), 89–94.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Mathematical Journal 119 (2003), 159–188.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Ludwig, Minkowski areas and valuations, Journal of Differential Geometry 86 (2010), 133–161.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Annals of Mathematics 172 (2010), 1219–1267.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Lutwak, The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas, Advances in Mathematics 118 (1996), 244–294.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, Journal of Differential Geometry 41 (1995), 227–246.

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Lutwak, D. Yang and G. Zhang, L p affine isoperimetric inequalities, Journal of Differential Geometry 56 (2000), 111–132.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Lutwak, D. Yang and G. Zhang, Sharp affine L p Sobolev inequalities, Journal of Differential Geometry 62 (2002), 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Lutwak, D. Yang and G. Zhang, Volume inequalities for subspaces of L p, Journal of Differential Geometry 68 (2004), 159–184.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Lutwak, D. Yang and G. Zhang, Moment-entropy inequalities for a random vector, IEEE Transactions on Information Theory 53 (2007), 1603–1607.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Paouris and E. M. Werner, Relative entropy of cone measures and L p centroid bodies, Proceedings of the London Mathematical Society 104 (2012), 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Paouris and E. M. Werner, On the approximation of a polytope by its dual L p-centroid bodies, Indiana University Mathematics Journal 62 (2013), 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Parapatits and T. Wannerer, On the inverse Klain map, Duke Mathematical Journal 162 (2013), 1895–1922.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Reitzner, Random points on the boundary of smooth convex bodies, Transactions of the American Mathematical Society 354 (2002), 2243–2278.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, Vol. 28, Princeton University Press, Princeton, NJ, 1970.

  48. R. Rockafellar and R. J. B. Wets, Variational Analysis, Grunlehren der Mathematischen Wissenschaften, Vol. 317, Springer, Berlin, 1998.

  49. G. Sapiro and A. Tannenbaum, On affine plane curve evolution, Journal of Functional Analysis 119 (1994), 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.

  51. F. Schuster, Crofton measures and Minkowski valuations, Duke Mathematical Journal 154 (2010), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Schütt, The convex floating body and polyhedral approximation, Israel Journal of Mathematics 73 (1991), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Schütt and E. M. Werner, The convex floating body, Mathematica Scandinavica 66 (1990), 275–290.

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Schütt and E. M. Werner, Homothetic floating bodies, Geometriae Dedicata 49 (1994), 335–348.

    Article  MathSciNet  MATH  Google Scholar 

  55. C. Schütt and E. M. Werner, Polytopes with vertices chosen randomly from the boundary of a convex body, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, 1807, Springer, Berlin, 2003, pp. 241–422.

    Google Scholar 

  56. C. Schütt and E. M. Werner, Surface bodies and p-affine surface area, Advances in Mathematics 187 (2004), 98–145.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Stancu, The discrete planar L 0-Minkowski problem, Advances in Mathematics 167 (2002), 160–174.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Stancu, On the number of solutions to the discrete two-dimensional L 0-Minkowski problem, Advances in Mathematics 180 (2003), 290–323.

    Article  MathSciNet  MATH  Google Scholar 

  59. N. S. Trudinger and X. J. Wang, The Bernstein problem for affine maximal hypersurfaces, Inventiones Mathematicae 140 (2000), 399–422.

    Article  MathSciNet  MATH  Google Scholar 

  60. N. S. Trudinger and X. J. Wang, Affine complete locally convex hypersurfaces, Inventiones Mathematicae 150 (2002), 45–60.

    Article  MathSciNet  MATH  Google Scholar 

  61. N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge–Ampere and affine maximal surface equations, Annals of Mathematics 167 (2008), 993–1028.

    Article  MathSciNet  MATH  Google Scholar 

  62. E. M. Werner and D. Ye, Inequalities for mixed p-affine surface area, Mathematische Annalen 347 (2010), 703–737.

    Article  MathSciNet  MATH  Google Scholar 

  63. E. M. Werner, Rényi divergence and L p-affine surface area for convex bodies, Advances in Mathematics 230 (2012), 1040–1059.

    Article  MathSciNet  MATH  Google Scholar 

  64. D. Ye, L p geominimal surface areas and their inequalities, International Mathematics Research Notices 9 (2015), 2465–2498.

    MATH  Google Scholar 

  65. G. Zhang, The affine Sobolev inequality, Journal of Differential Geometry 53 (1999), 183–202.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

We thank the referee for the careful reading and suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth M. Werner.

Additional information

Partially supported by NSF grant DMS-1504701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Schütt, C. & Werner, E.M. Floating functions. Isr. J. Math. 231, 181–210 (2019). https://doi.org/10.1007/s11856-019-1850-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1850-1

Navigation