Skip to main content
Log in

Well-posedness for degenerate third order equations with delay and applications to inverse problems

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study well-posedness for the following third-order in time equation with delay

$$\left( {0.1} \right)\;\alpha \left( {Mu'} \right)''\left( t \right) + \left( {Nu'} \right)'\left( t \right) = \beta Au\left( t \right) + \gamma Bu{'(t)} + Gu{'_t}+F{u_t} + f\left( t \right),\;t \in \left[ {0,2\pi } \right]$$

where α, β, γ are real numbers, A and B are linear operators defined on a Banach space X with domains D(A) and D(B) such that

$$D(A)\cap{D(B)}\subset{D(M)}\cap{D(N)};$$

u(t)is the state function taking values in X and ut: (−∞, 0] → X defined as ut(θ) = u(t+θ) for θ < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue–Bochner spaces \(L^p(\mathbb{T}, X)\), periodic Besov spaces \(B^s_{p,q}(\mathbb{T}, X)\) and periodic Triebel–Lizorkin spaces \(F^s_{p,q}(\mathbb{T}, X)\). A novel application to an inverse problem is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.

    Article  Google Scholar 

  2. M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.

    Article  MATH  Google Scholar 

  4. U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.

    MathSciNet  Google Scholar 

  5. W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste 28 (1996), 29–57.

    MathSciNet  MATH  Google Scholar 

  9. A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.

    Google Scholar 

  10. S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).

  18. O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.

    Google Scholar 

  19. K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.

    Google Scholar 

  20. M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.

    Google Scholar 

  24. X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Grisvard, Équations différentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.

    Article  MATH  Google Scholar 

  27. J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.

    Google Scholar 

  29. B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.

    Article  MATH  Google Scholar 

  38. V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Heidelberg, 1993.

    Google Scholar 

  41. G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.

    Book  MATH  Google Scholar 

  42. L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conejero, J.A., Lizama, C., Murillo-Arcila, M. et al. Well-posedness for degenerate third order equations with delay and applications to inverse problems. Isr. J. Math. 229, 219–254 (2019). https://doi.org/10.1007/s11856-018-1796-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1796-8

Navigation