Skip to main content
Log in

Nonlinear Loewy factorizable algebraic ODEs and Hayman’s conjecture

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce certain n-th order nonlinear Loewy factorizable algebraic ordinary differential equations for the first time and study the growth of their meromorphic solutions in terms of the Nevanlinna characteristic function. It is shown that for generic cases all their meromorphic solutions are elliptic functions or their degenerations and hence their order of growth is at most two. Moreover, for the second order factorizable algebraic ODEs, all their meromorphic solutions (except for one case) are found explicitly. This allows us to show that a conjecture proposed by Hayman in 1996 holds for these second order ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for a special wave speed, Bulletin of Mathematical Biology 41 (1979), 835–840.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. B. Bank, Some results on analytic and meromorphic solutions of algebraic differential equations, Advances in Mathematics 15 (1975), 41–61.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. F. Barth, D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bulletin of the London Mathematical Society 16 (1984), 490–517.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Basu, S. Bose and T. Vijayaraghavan, A simple example for a theorem of Vijayaraghavan, Journal of the London Mathematical Society 12 (1937), 250–252.

    Article  MATH  Google Scholar 

  5. E. Borel, Mémoire sur les séries divergentes, Annales Scientifiques de l’école Normale Supérieure 16 (1899), 9–131.

    Article  MATH  Google Scholar 

  6. Y. M. Chiang and R. G. Halburd, On the meromorphic solutions of an equation of Hayman, Journal of Mathematical Analysis and Applications 281 (2003), 663–677.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. T. Chuang and C. C. Yang, Fix-points and Factorization Theory of Meromorphic Functions, World Scientific, Teaneck, NJ, 1990.

    MATH  Google Scholar 

  8. R. Conte, The Painlevé approach to nonlinear ordinary differential equations, in The Painlevé Property, CRM Series in Mathematical Physics, Springer, New York, 1999, pp. 77–180.

    Chapter  Google Scholar 

  9. R. Conte, A. P. Fordy and A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Physica D. Nonlinear Phenomena 69 (1993), 33–58.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Conte and T. W. Ng, Meromorphic solutions of a third order nonlinear differential equation, Journal of Mathematical Physics 51 (2010), 033518.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Conte, T. W. Ng and C. F. Wu, Hayman’s classical conjecture on some nonlinear second-order algebraic ODEs, Complex Variables and Elliptic Equations 60 (2015), 1539–1552.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Cornejo-Pérez and H. Rosu, Nonlinear second order ode’s: Factorizations and particular solutions, Progress of Theoretical Physics 114 (2005), 533–538.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Darboux, Sur les équations aux dérivées partielles, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 96 (1883), 766–769.

    MATH  Google Scholar 

  14. A. E. Eremenko, Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation, Journal of Mathematical Physics, Analysis, Geometry 2 (2006), 278–286.

    MathSciNet  MATH  Google Scholar 

  15. A. E. Eremenko, L. Liao and T. W. Ng, Meromorphic solutions of higher order Briot-Bouquet differential equations, Mathematical Proceedings of the Cambridge Philosophical Society 146 (2009), 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Fowler, Some results on the form near infinity of real continuous solutions of a certain type of second-order differential equation, Proceedings of the London Mathematical Society 13 (1914), 341–371.

    Article  MathSciNet  Google Scholar 

  17. P. Gallagher, Some algebraic differential equations with few transcendental solutions, Journal of Mathematical Analysis and Applications 428 (2015), 717–734.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Gol’dberg, On one-valued integrals of differential equations of the first order, Ukraininskiĭ Matematičeskiĭ Žurnal 8 (1956), 254–261.

    MathSciNet  Google Scholar 

  19. R. G. Halburd and J. Wang, All admissible meromorphic solutions of Hayman’s equation, International Mathematics Research Notices 18 (2015), 8890–8902.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. H. Hardy, Some results concerning the behavior at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proceedings of the London Mathematical Society 10 (1912), 451–468.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. K. Hayman, The growth of solutions of algebraic differential equations, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 7 (1996), 67–73.

    MathSciNet  MATH  Google Scholar 

  22. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1944.

    MATH  Google Scholar 

  23. L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bulletin of Mathematics 22 (1998), 385–405.

    MathSciNet  MATH  Google Scholar 

  24. A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Vestnik Moskovskogo Universiteta 1 (1937), 1–25.

    Google Scholar 

  25. N. A. Kudryashov, Meromorphic solutions of nonlinear ordinary differential equations, Communications in Nonlinear Science and Numerical Simulation 15 (2010), 2778–2790.

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, Vol. 15, Walter de Gruyter, Berlin, 1993.

    Book  MATH  Google Scholar 

  27. I. Laine, Complex differential equations, in Ordinary Differential Equations Handbook of Differential Equations, Vol. 4, Elsevier/North-Holland, Amsterdam, 2008, pp. 269–363.

    Chapter  Google Scholar 

  28. E. Lindelöf, Sur la croissance des intégrales des équations différentielles algébrique du premier order, Bulletin de la Société Mathématique de France 27 (1899), 205–215.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Loewy, Uber vollständig reduzible lineare homogene Differentialgleichungen, Mathematische Annalen 56 (1906), 89–117.

    Article  MATH  Google Scholar 

  30. P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bulletin de la Société Mathématique de France 28 (1900), 201–261.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. A. Rubel, Some research problems about algebraic differential equations II, Illinois Journal of Mathematics 36 (1992), 659–680.

    MathSciNet  MATH  Google Scholar 

  32. F. Schwarz, Loewy Decomposition of Linear Differential Equations, Texts and Monographs in Symbolic Computation, Springer, Vienna, 2012.

    Google Scholar 

  33. F. Schwarz, Loewy decomposition of linear differential equations, Bulletin of Mathematical Sciences 3 (2013), 19–71.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. P. Tsarev, Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations, Theoretical and Mathematical Physics 122 (2000), 121–133.

    Article  MathSciNet  Google Scholar 

  35. T. Vijayaraghavan, Sur la croissance des fonctions définies par les équations différentielles, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 194 (1932), 827–829.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuen-Wai Ng.

Additional information

Supported by PROCORE - France/Hong Kong joint research grant, F-HK39/11T and RGC grant HKU 704409P.

Supported by NSFC grant (No. 11701382) and RGC grant HKU 704611P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, TW., Wu, CF. Nonlinear Loewy factorizable algebraic ODEs and Hayman’s conjecture. Isr. J. Math. 229, 1–38 (2019). https://doi.org/10.1007/s11856-018-1791-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1791-0

Navigation