Skip to main content
Log in

On subelliptic manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A smooth complex quasi-affine algebraic variety Y is flexible if its special group SAut(Y) of automorphisms (generated by the elements of one-dimensional unipotent subgroups of Aut(Y)) acts transitively on Y, and an algebraic variety is stably flexible if its product with some affine space is flexible. An irreducible algebraic variety X is locally stably flexible if it is a union of a finite number of Zariski open sets each of which is stably flexible. The main result of this paper states that the blowup of a locally stably flexible variety along a smooth algebraic subvariety (not necessarily equidimensional or connected) is subelliptic, and, therefore, it is an Oka manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg, Flexible varieties and automorphism groups, Duke Mathematical Journal 162 (2013), 767–823.

    Article  MathSciNet  Google Scholar 

  2. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint.

  3. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.

    Chapter  Google Scholar 

  4. K. H. Fieseler, On complex affine surfaces with C+-actions, Commentarii Mathematici Helvetici 69 (1994), 5–27.

    Article  MathSciNet  Google Scholar 

  5. H. Flenner, S. Kaliman and M. Zaidenberg, On Gromov–Winkelmann type theorem for flexible varieties, Journal of the European Mathematical Society 18 (2016), 2483–2510.

    Article  MathSciNet  Google Scholar 

  6. F. Forstnerič, Stein Manifolds and Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 56, Springer-Verlag, Heidelberg, 2011.

  7. F. Forstnerič, The Oka principle for sections of subelliptic submersions, Mathematische Zeitschrift 241 (2002), 527–551.

    Article  MathSciNet  Google Scholar 

  8. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol. 136, Springer Berlin, 2006.

  9. M. H. Gizatullin, Quasihomogeneous affine surfaces, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 35 (1971), 1047–1071.

    MathSciNet  MATH  Google Scholar 

  10. M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, Journal of the American Mathematical Society 2 (1989), 851–897.

    MathSciNet  MATH  Google Scholar 

  11. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York–Heidelberg, 1977.

    Book  Google Scholar 

  12. S. Kaliman, Actions of C* and C+ on affine algebraic varieties, in Algebraic Geometry—Seattle 2005. Part 2, Proceedings of Symposia in Pure Mathematics, Vol. 80, Part 2, American Mathematical Society, Providence, RI, 2009, pp. 629–654.

    MathSciNet  MATH  Google Scholar 

  13. S. Kaliman, Extensions of isomorphisms of subvarieties in flexible manifolds, arXiv:1703.08461v6.

  14. S. Kaliman and L. Makar-Limanov, AK-invariant of affine domains, in Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp. 231–255.

    MATH  Google Scholar 

  15. F. Lárusson and T. T. Truong, Algebraic subellipticity and dominability of blow-ups of affine spaces, Documenta Mathematica 22 (2017), 151–163.

    MathSciNet  MATH  Google Scholar 

  16. L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel Journal of Mathematics 69 (1990), 250–256.

    Article  MathSciNet  Google Scholar 

  17. V. L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and onedimensional homogeneous vector bundles, Mathematics of the USSR-Izvestiya 8 (1974), 301–327.

    Article  Google Scholar 

  18. V. L. Popov and E. B. Vinberg, Invariant theory, in Algebraic geometry IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin–Heidelberg, 1994, pp. 123–278.

    Google Scholar 

  19. C. P. Ramanujam, A note on automorphism groups of algebraic varieties, Mathematische Annalen 156 (1964), 25–33.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulim Kaliman.

Additional information

Dedicated to Mikhail Zaidenberg on the occasion of his 70-th birthday

The second author was partially supported by Schweizerische Nationalfonds grants No. 200020-134876/1 and 200021-140235/1.

The third author was supported by Australian Research Council grants DP120104110 and DP150103442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliman, S., Kutzschebauch, F. & Truong, T.T. On subelliptic manifolds. Isr. J. Math. 228, 229–247 (2018). https://doi.org/10.1007/s11856-018-1760-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1760-7

Navigation