Skip to main content
Log in

Polar factorization of conformal and projective maps of the sphere in the sense of optimal mass transport

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let M be a compact Riemannian manifold and let μ, d be the associated measure and distance on M. Robert McCann, generalizing results for the Euclidean case by Yann Brenier, obtained the polar factorization of Borel maps S: MM pushing forward μ to a measure ν: each S factors uniquely a.e. into the composition S = TU, where U: MM is volume preserving and T: MM is the optimal map transporting μ to ν with respect to the cost function d2/2.

In this article we study the polar factorization of conformal and projective maps of the sphere Sn. For conformal maps, which may be identified with elements of Oo(1, n+1), we prove that the polar factorization in the sense of optimal mass transport coincides with the algebraic polar factorization (Cartan decomposition) of this Lie group. For the projective case, where the group GL+(n + 1) is involved, we find necessary and sufficient conditions for these two factorizations to agree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Benamou and Y. Brenier, A computational Fluid Mechanics solution to the Monge–Kantorovich mass transfer problem, Numerische Mathematik 84 (2000), 375–393.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Brasco, A survey on dynamical transport distances, Journal of Mathematical Sciences (New York) 181 (2012), 755–781.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 305 (1987), 805–808.

    MATH  Google Scholar 

  4. G. Buttazzo, Evolution models for mass transportation problems, Milan Journal of Mathematics 80 (2012), 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cordero-Erausquin, Sur le transport de mesures périodiques, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 329 (1999), 199–202.

    MathSciNet  MATH  Google Scholar 

  6. D. Cordero-Erausquin, R. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Inventiones Mathematicae 146 (2001), 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Emmanuele and M. Salvai, Force free Möbius motions of the circle, Journal of Geometry and Symmetry in Physics 27 (2012), 59–65.

    MathSciNet  MATH  Google Scholar 

  8. U. Hertrich-Jeromin, Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, Vol. 300, Cambridge University Press, Cambridge, 2003.

  9. Y. H. Kim and R. McCann, Continuity, curvature, and the general covariance of optimal transportation, Journal of the European Mathematical Society 12 (2010), 1009–1040.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. H. Kim, R. McCann and M. Warren, Pseudo-Riemannian geometry calibrates optimal transportation, Mathematical Research Letters 17 (2010), 1183–1197.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. M. Lazarte, M. Salvai and A. Will, Force free projective motions of the sphere, Journal of Geometry and Physics 57 (2007), 2431–2436.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Q. Le, Hölder regularity of the 2D dual semigeostrophic equations via analysis of linearized Monge–Ampère equations, Communications in Mathematical Physics, to appear.

  13. G. Loeper, Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Archive for Rational Mechanics and Analysis 199 (2011), 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. McCann, Polar factorization of maps on Riemannian manifolds, Geometric and Functional Analysis 11 (2001), 589–608.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Salvai, Force free conformal motions of the sphere, Differential Geometry and its Applications 16 (2002), 285–292.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften, Vol. 338, Springer-Verlag, Berlin, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamile Godoy.

Additional information

This work was partially supported by Conicet (PIP 112-2011-01-00670), Foncyt (PICT 2010 cat 1 proyecto 1716) Secyt Univ. Nac. Córdoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy, Y., Salvai, M. Polar factorization of conformal and projective maps of the sphere in the sense of optimal mass transport. Isr. J. Math. 225, 465–478 (2018). https://doi.org/10.1007/s11856-018-1673-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1673-5

Navigation