Israel Journal of Mathematics

, Volume 219, Issue 1, pp 449–467 | Cite as

An upper bound on the Chebotarev invariant of a finite group



A subset {g 1,..., g d } of a finite group G invariably generates \(\left\{ {g_1^{{x_1}}, \ldots ,g_d^{{x_d}}} \right\}\) generates G for every choice of x i G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The first author recently showed that \(C\left( G \right) \leqslant \beta \sqrt {\left| G \right|} \) for some absolute constant β. In this paper we show that, when G is soluble, then β is at most 5/3. We also show that this is best possible. Furthermore, we show that, in general, for each ε > 0 there exists a constant c ε such that \(C\left( G \right) \leqslant \left( {1 + \in } \right)\sqrt {\left| G \right|} + {c_ \in }\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Mathematics and Its Applications, Vol. 584, Springer, Dordrecht, 2006.MATHGoogle Scholar
  2. [2]
    P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, Vol. 45, Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
  3. [3]
    F. Dalla Volta and A. Lucchini, Finite groups that need more generators than any proper quotient, Journal of the Australian Mathematical Society 64 (1998), 82–91.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, Journal of Algebra 265 (2003), 651–668.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Mathematics 105 (1992), 25–39.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    W. Gaschütz, Praefrattinigruppen, Archiv der Mathematik 13 (1962), 418–426.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. Jiménez-Seral and J. Lafuente, On complemented nonabelian chief factors of a finite group, Israel Journal of Mathematics 106 (1998), 177–188.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, Journal of Algebra 348 (2011), 302–314.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    E. Kowalski and D. Zywina, The Chebotarev invariant of a finite group, Experimental Mathematics 21 (2012), 38–56.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A. Lucchini, The Chebotarev invariant of a finite group: A conjecture of Kowalski and Zywina, arXiv:1509.05859v2.Google Scholar
  11. [11]
    C. Pomerance, The expected number of random elements to generate a finite abelian group, Periodica Mathematica Hungarica 43 (2001), 191–198MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    U. Stammbach, Cohomological characterisations of finite solvable and nilpotent groups, Journal of Pure and Applied Algebra 11 (1977/78), 293–301.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Università degli Studi di PadovaDipartimento di MatematicaPadovaItaly
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations