Israel Journal of Mathematics

, Volume 219, Issue 1, pp 411–430 | Cite as

Embeddings of quotient division algebras of rings of differential operators

Article
  • 39 Downloads

Abstract

Let k be an algebraically closed field of characteristic zero, let X and Y be smooth irreducible algebraic curves over k, and let D(X) and D(Y) denote respectively the quotient division rings of the ring of differential operators of X and Y. We show that if there is a k-algebra embedding of D(X) into D(Y), then the genus of X must be less than or equal to the genus of Y, answering a question of the first-named author and Smoktunowicz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Artin, Some problems on three-dimensional graded domains, in Representation theory and algebraic geometry (Waltham, MA, 1995), London Math. Soc. Lecture Note Ser., Vol. 238, Cambridge Univ. Press, Cambridge, 1997, pp. 1–19.CrossRefGoogle Scholar
  2. [2]
    J. P. Bell, Division algebras of Gelfand-Kirillov transcendence degree 2, Israel J. Math. 171 (2009), 51–60.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. P. Bell and A. Smoktunowicz, Rings of differential operators on curves, Israel J. Math. 192 (2012), 297–310.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    D. Chan and C. Ingalls, The minimal model program for orders over surfaces, Invent. Math. 161 (2005), 427–452.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, Vol. 57, Cambridge University Press, Cambridge, 1995, Theory of general division rings.Google Scholar
  6. [6]
    P. M. Cohn, Free ideal rings and localization in general rings, New Mathematical Monographs, Vol. 3, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  7. [7]
    D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, Vol. 150, Springer- Verlag, New York, 1995, With a view toward algebraic geometry.Google Scholar
  8. [8]
    I. M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. (1966), 5–19.MATHGoogle Scholar
  9. [9]
    K. R. Goodearl and J. T. Stafford, The graded version of Goldie’s theorem, in Algebra and its applications (Athens, OH, 1999), Contemp. Math., Vol. 259, Amer. Math. Soc., Providence, RI, 2000, pp. 237–240.Google Scholar
  10. [10]
    A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), 231 pp.MATHGoogle Scholar
  11. [11]
    A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), 361 pp.MATHGoogle Scholar
  12. [12]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.CrossRefGoogle Scholar
  13. [13]
    J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, Vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983.Google Scholar
  14. [14]
    G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, revised ed., Graduate Studies in Mathematics, Vol. 22, American Mathematical Society, Providence, RI, 2000.MATHGoogle Scholar
  15. [15]
    L. Makar-Limanov, The skew field of fractions of the Weyl algebra contains a free noncommutative subalgebra, Comm. Algebra 11 (1983), 2003–2006.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.MATHGoogle Scholar
  17. [17]
    A. H. Schofield, Stratiform simple Artinian rings, Proc. London Math. Soc. (3) 53 (1986), 267–287.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407–414.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    C. Tsen, Divisionsalgebren über funktionenkörpern, Nachr. Ges. Wiss. Göttingen, Math.- Phys. Kl. (1933), 335–339.Google Scholar
  20. [20]
    A. Yekutieli and J. J. Zhang, Homological transcendence degree, Proc. London Math. Soc. (3) 93 (2006), 105–137.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J. J. Zhang, On Gelfand-Kirillov transcendence degree, Trans. Amer. Math. Soc. 348 (1996), 2867–2899.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. J. Zhang, On lower transcendence degree, Adv. Math. 139 (1998), 157–193.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  • Jason P. Bell
    • 1
  • Colin Ingalls
    • 2
  • Ritvik Ramkumar
    • 3
  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterloo, ONCanada
  2. 2.Department of Mathematics and StatisticsUniversity of New BrunswickFredricton, NBCanada
  3. 3.Department of MathematicsUniversity of California, BerkeleyBerkeley, CAUSA

Personalised recommendations