Skip to main content
Log in

On Lipschitz extension from finite subsets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that for every n ∈ ℕ there exists a metric space (X, d X), an n-point subset SX, a Banach space (Z, \({\left\| \right\|_Z}\)) and a 1-Lipschitz function f: SZ such that the Lipschitz constant of every function F: XZ that extends f is at least a constant multiple of \(\sqrt {\log n} \). This improves a bound of Johnson and Lindenstrauss [JL84]. We also obtain the following quantitative counterpart to a classical extension theorem of Minty [Min70]. For every α ∈ (1/2, 1] and n ∈ ℕ there exists a metric space (X, d X), an n-point subset S ⊆ X and a function f: S → ℓ2 that is α-Hölder with constant 1, yet the α-Hölder constant of any F: X → ℓ2 that extends f satisfies \({\left\| F \right\|_{Lip\left( \alpha \right)}} > {\left( {\log n} \right)^{\frac{{2\alpha - 1}}{{4\alpha }}}} + {\left( {\frac{{\log n}}{{\log \log n}}} \right)^{{\alpha ^2} - \frac{1}{2}}}\). We formulate a conjecture whose positive solution would strengthen Ball’s nonlinear Maurey extension theorem [Bal92], serving as a far-reaching nonlinear version of a theorem of König, Retherford and Tomczak-Jaegermann [KRTJ80]. We explain how this conjecture would imply as special cases answers to longstanding open questions of Johnson and Lindenstrauss [JL84] and Kalton [Kal04].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Achlioptas, Database-friendly random projections: Johnson–Lindenstrauss with binary coins, Journal of Computer and System Sciences 66 (2003), 671–687.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar and É. Tardos, Approximate classification via earthmover metrics, in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2004, pp. 1079–1087 (electronic).

    Google Scholar 

  3. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis 2 (1992), 137–172.

    Article  MathSciNet  MATH  Google Scholar 

  4. Keith Ball, The Ribe programme, Astérisque 352 (2013), Exp. No. 1047, viii, 147–159.

  5. B. Begun, A remark on almost extensions of Lipschitz functions, Israel Journal of Mathematics 109 (1999), 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bollobás and W. Fernandez de la Vega, The diameter of random regular graphs, Combinatorica 2 (1982), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  8. J. Bourgain, A counterexample to a complementation problem, Compositio Mathematica 43 (1981), 133–144.

    MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, in Geometrical Aspects of Functional Analysis (1985/86), Lecture Notes in Mathematics, Vol. 1267, Springer, Berlin, 1987, pp. 157–167.

    Chapter  Google Scholar 

  10. C. Chekuri, S. Khanna, J. Naor and L. Zosin, A linear programming formulation and approximation algorithms for the metric labeling problem, SIAM Journal on Discrete Mathematics 18 (2004/05), 608–625.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Calinescu, H. Karloff and Y. Rabani, Approximation algorithms for the 0-extension problem, SIAM Journal on Computing 34 (2004/05), 358–372.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Diestel, Graph Theory, Graduate Texts in Mathematics, Vol. 173, Springer, Heidelberg, 2010.

    Book  MATH  Google Scholar 

  13. [DJP+94]_E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour and M. Yannakakis, The complexity of multiterminal cuts, SIAM Journal on Computing 23 (1994), 864–894.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Dvoretzky, Some results on convex bodies and Banach spaces, in Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160..

    Google Scholar 

  15. P. Enflo, On the nonexistence of uniform homeomorphisms between Lp-spaces, Arkiv för Matematik 8 (1969), 103–105.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fakcharoenphol, C. Harrelson, S. Rao and K. Talwar, An improved approximation algorithm for the 0-extension problem, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), ACM, New York, 2003, pp. 257–265.

    Google Scholar 

  17. T. Figiel, W. B. Johnson and G. Schechtman, Factorizations of natural embeddings of ln p into Lr. I, Studia Mathematica 89 (1988), 79–103.

    MathSciNet  MATH  Google Scholar 

  18. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Mathematica 139 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel Journal of Mathematics 33 (1979), 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (2006), 439–561 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  21. T. L. Hayden and J. H. Wells, On the extension of Lipschitz–Hölder maps of order ß, Journal of Mathematical Analysis and Applications 33 (1971), 627–640.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Contemporary Mathematics, Vol. 26, American Mathematical Society, Providence, RI, 1984, pp. 189–206.

    Chapter  Google Scholar 

  23. W. B. Johnson, J. Lindenstrauss and G. Schechtman, Extensions of Lipschitz maps into Banach spaces, Israel Journal of Mathematics 54 (1986), 129–138.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, New York, 1948, pp. 187–204.

    Google Scholar 

  25. N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collectanea Mathematica 55 (2004), 171–217.

    MathSciNet  MATH  Google Scholar 

  26. N. J. Kalton, The uniform structure of Banach spaces, Mathematische Annalen 354 (2012), 1247–1288.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. V. Karzanov, Minimum 0-extensions of graph metrics, European Journal of Combinatorics 19 (1998), 71–101.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. S. Kašin, The widths of certain finite-dimensional sets and classes of smooth functions, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 41 (1977), 334–351, 478.

    MathSciNet  Google Scholar 

  29. M. D. Kirszbraun, Über die zusammenziehenden und Lipschitzchen Transformationen, Fundamenta Mathematicae 22 (1934), 77–108.

    MATH  Google Scholar 

  30. H. Karloff, S. Khot, A. Mehta and Y. Rabani, On earthmover distance, metric labeling, and 0-extension, SIAM Journal on Computing 39 (2009), 371–387.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. König, J. R. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of (p, 2)-summing operators and constants associated with normed spaces, Journal of Functional Analysis 37 (1980), 88–126.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Ĭ. Kadec and M. G. Snobar, Certain functionals on the Minkowski compactum, Rossiĭskaya Akademiya Nauk. Matematicheskie Zametki 10 (1971), 453–457.

    MathSciNet  Google Scholar 

  33. U. Lang, Extendability of large-scale Lipschitz maps, Transactions of the American Mathematical Society 351 (1999), 3975–3988.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. R. Lewis, Finite dimensional subspaces of Lp, Studia Mathematica 63 (1978), 207–212.

    MathSciNet  MATH  Google Scholar 

  35. J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Mathematical Journal 11 (1964), 263–287.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. R. Lee and A. Naor, Metric decomposition, smooth measures, and clustering, preprint, available on request, 2003.

    Google Scholar 

  37. J. R. Lee and A. Naor, Absolute Lipschitz extendability Comptes Rendus Mathématique. Académie des Sciences. Paris 338 (2004), 859–862.

    Google Scholar 

  38. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones Mathematicae 160 (2005), 59–95.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Matoušek, On embedding expanders into lp spaces, Israel Journal of Mathematics 102 (1997), 189–197.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Matoušek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, Vol. 212, Springer-Verlag, New York, 2002.

    Book  Google Scholar 

  41. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L p, Société Mathématique de France, Paris, 1974.

    MATH  Google Scholar 

  42. K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927), 96–115.

    MATH  Google Scholar 

  43. G. J. Minty, On the extension of Lipschitz, Lipschitz–Hölder continuous, and monotone functions, Bulletin of the American Mathematical Society 76 (1979), 334–339.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and Lipschitz extendability, in IEEE 51st Annual Symposium on Foundations of Computer Science FOCS 2010, IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 255–264.

    Chapter  Google Scholar 

  45. M. Mendel and A. Naor, Spectral calculus and Lipschitz extension for barycentric metric spaces, Analysis and Geometry in Metric Spaces 1 (2013), 163–199.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Mendel and A. Naor, Ultrametric skeletons, Proceedings of the National Academy of Sciences of the United States of America 110 (2013), 19256–19262.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Mendel and A. Naor, Expanders with respect to Hadamard spaces and random graphs, Duke Mathematical Journal 164 (2015), 1471–1548.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. B. Marcus and G. Pisier, Characterizations of almost surely continuous pstable random Fourier series and strongly stationary processes, Acta Mathematica 152 (1984), 245–301.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-dimensional Normed Spaces, Lecture Notes in Mathematics, Vol. 1200, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  50. A. Naor, A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces, Mathematika 48 (2001), 253–271 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Naor, An introduction to the Ribe program, Japanese Journal of Mathematics 7 (2012), 167–233.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Naor, Y. Peres, O. Schrammand S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Mathematical Journal 134 (2006), 165–197.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Naor, Y. Rabani and A. Sinclair, Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs, Journal of Functional Analysis 227 (2005), 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Pisier, Estimations des distances à un espace euclidien et des constantes de projection des espaces de Banach de dimension finie; d’après H. König et al., in Séminaire d’Analyse Fonctionnelle (1978–1979), École Polytech., Palaiseau, 1979, Exp. No. 10, 21.

    Google Scholar 

  55. D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, Journal of the London Mathematical Society 40 (1965), 241–255.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  57. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, Vol. 25, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Additional information

A. N. was supported in part by the NSF, the BSF, the Packard Foundation and the Simons Foundation.

Y. R. was supported in part by the ISF, the BSF, and by the Israeli Center of Excellence on Algorithms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naor, A., Rabani, Y. On Lipschitz extension from finite subsets. Isr. J. Math. 219, 115–161 (2017). https://doi.org/10.1007/s11856-017-1475-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1475-1

Navigation