Israel Journal of Mathematics

, Volume 219, Issue 1, pp 71–114 | Cite as

Two-weight inequality for operator-valued positive dyadic operators by parallel stopping cubes



We study the operator-valued positive dyadic operator
$${T_\lambda }\left( {f\sigma } \right): = \sum\limits_{Q \in D} {{\lambda _Q}} \int_Q {fd\sigma 1Q}, $$
where the coefficients {λ Q : CD} QD are positive operators from a Banach lattice C to a Banach lattice D. We assume that the Banach lattices C and D* each have the Hardy–Littlewood property. An example of a Banach lattice with the Hardy–Littlewood property is a Lebesgue space.
In the two-weight case, we prove that the L C p (σ) → L D q (ω) boundedness of the operator T λ( · σ) is characterized by the direct and the dual L testing conditions:
$$\left\| {{1_Q}{T_\lambda }} \right\|{\left( {{1_Q}f\sigma } \right)||_{L_D^q\left( \omega \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\sigma } \right)}}\sigma {\left( Q \right)^{1/p}}$$
$${\left\| {{1_Q}{T_\lambda }*\left( {{1_{Qg\omega }}} \right)} \right\|_{L_{C*}^{p'}\left( \sigma \right)}} \lesssim {\left\| g \right\|_{L_{D*}^\infty \left( {Q,\omega } \right)}}\omega {\left( Q \right)^{1/q'}}$$

Here L C p (σ) and L D q (ω) denote the Lebesgue–Bochner spaces associated with exponents 1 < pq < ∞, and locally finite Borel measures σ and ω.

In the unweighted case, we show that the L C p (μ) → L D p (μ) boundedness of the operator T λ( · μ) is equivalent to the end-point direct L testing condition:
$${\left\| {{1_Q}{T_\lambda }\left( {{1_Q}f\mu } \right)} \right\|_{L_D^1\left( \mu \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\mu } \right)}}\left( {Q,\mu } \right)\mu \left( Q \right)$$

This condition is manifestly independent of the exponent p. By specializing this to particular cases, we recover some earlier results in a unified way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bourgain, Extension of a result of Benedek, Calderón and Panzone, Arkiv för Matematik 22 (1984), 91–95.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D. L. Burkholder, Explorations in martingale theory and its applications, in École d’ Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Mathematics, Vol. 1464, Springer, Berlin, 1991, pp. 1–66.Google Scholar
  3. [3]
    C. Fefferman and E. M. Stein, Some maximal inequalities, American Journal of Mathematics 93 (1971), 107–115.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. García-Cuerva, R. Macías and J. L. Torrea, The Hardy–Littlewood property of Banach lattices, Israel Journal of Mathematics 83 (1993), 177–201.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. García-Cuerva, R. A. Macías and J. L. Torrea, Maximal operators and B.M.O. for Banach lattices, Proceedings of the Edinburgh Mathematical Society 41 (1998), 585–609.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    T. S. Hänninen and T. P. Hytönen, Operator-valued dyadic shifts and the t(1) theorem, Monatdchefte für Mathemtik 180 (2016), 213–253.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. P. Hytönen, The A2 theorem: remarks and complements, in Harmonic Analysis and Partial Differential Equations, Contemporary Mathematics, Vol. 612, American Mathematical Society, Providence, RI, 2014, pp. 91–106.Google Scholar
  8. [8]
    T. P. Hytönen, M. T. Lacey and C. Pérez, Sharp weighted bounds for the q-variation of singular integrals, Bulletin of the London Mathematical Society 45 (2013), 529–540.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. Kemppainen, On the Rademacher maximal function, Studia Mathematica 203 (2011), 1–31.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. T. Lacey, E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: A real variable characterization. I, Duke Mathematical Journal 163 (2014), 2795–2820.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. T. Lacey, E. T. Sawyer and I. Uriarte-Tuero, Two weight inequalities for discrete positive operators, preprint, (2009), arXiv:0911.3437 [math.CA].MATHGoogle Scholar
  12. [12]
    J. Lai, A new two weight estimates for a vector-valued positive operator, preprint, (2015), arXiv:1503.06778 [math.CA].Google Scholar
  13. [13]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 97, Springer-Verlag, Berlin–New York, 1979.CrossRefMATHGoogle Scholar
  14. [14]
    L. D. López-Sánchez, J. M. Martell and J. Parcet, Dyadic harmonic analysis beyond doubling measures, Advances in Mathematics 267 (2014), 44–93.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. D. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities, Advances in Mathematics 192 (2005), 310–340.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    F. Nazarov, S. Treil and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, Journal of the American Mathematical Society 12 (1999), 909–928.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    F. Nazarov, S. Treil and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta Mathematica 190 (2003), 151–239.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    F. L. Nazarov and S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), 32–162.MathSciNetMATHGoogle Scholar
  19. [19]
    F. Nazarov, S. Treil and A. Volberg, Counterexample to the infinite-dimensional Carleson embedding theorem, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 325 (1997), 383–388.MathSciNetMATHGoogle Scholar
  20. [20]
    J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, in Probability and Banach Spaces (Zaragoza, 1985), Lecture Notes in Mathematics, Vol. 1221, Springer, Berlin, 1986, pp. 195–222.CrossRefGoogle Scholar
  21. [21]
    E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Transactions of the American Mathematical Society 308 (1988), 533–545.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Scurry, A characterization of two-weight inequalities for a vector-valued operator, preprint, (2010), arXiv:1007.3089 [math.CA].Google Scholar
  23. [23]
    S. Treil, A remark on two weight estimates for positive dyadic operators, in Operator-Related Function Theory and Time-Frequency Analysis. The Abel Symposium 2012, Abel Symposia, Vol. 9, Springer International Publishing, Cham, 2015, pp. 185–195.Google Scholar
  24. [24]
    J. M. A. M. van Neerven, Stochastic Evolution Equations, Lecture Notes of the Internet Seminar 2007-2008, (2008), available at Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations