Israel Journal of Mathematics

, Volume 219, Issue 1, pp 1–70 | Cite as

Iwasawa modules and p-modular representations of GL2



Let F be a finite extension of Q p . We associate, to certain smooth pmodular representations π of GL 2(F), a module \(\mathfrak{S}(\pi )\) on the mod-p Iwasawa algebra of the standard Iwahori subgroup I of GL 2(F). When F is unramified, we obtain a module on a suitable formally smooth F q-algebra, endowed with an action of \(\mathcal{O}_F^ \times \) (the units in the ring of integers of F) and an \(\mathcal{O}_F^ \times \) equivariant, Frobenius semilinear endomorphism which turns out to be p-étale. We study the torsion properties of such a module, as well as its Iwahori-radical filtration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB]
    K. Ardakov and K. A. Brown, Ring-Theoretic Properties of Iwasawa Algebras: A Survey, Documenta Mathematica, Extra Volume Coates (2006), 7–33.Google Scholar
  2. [BL94]
    L. Barthel and R. Livné, Irreducible modular representation of GL2 of a local field, Duke Mathematical Journal 75 (1994), 261–292.MathSciNetCrossRefMATHGoogle Scholar
  3. [BLZ]
    L. Berger, Hanfeng Li and Hui June Zhu, Construction of some families of 2-dimensional crystalline representations Mathematische Annalen 329 (2004), 365–377.MathSciNetCrossRefMATHGoogle Scholar
  4. [Ber]
    L. Berger, Limites des représentations cristallines Compositio Mathematica 140 (2004), 1473–1498.MathSciNetCrossRefMATHGoogle Scholar
  5. [Ber1]
    L. Berger, La correspondance de langlands locale p-adique pour GL2(Qp), exposé 1017 du séminaire Bourbaki, Astérisque 339 (2011), 157–180.Google Scholar
  6. [Bre03a]
    C. Breuil, Sur quelques répresentations modulaires et p-adiques de GL2(Qp) I, Compositio Mathematica 138 (2003), 165–188.MathSciNetCrossRefMATHGoogle Scholar
  7. [Bre03b]
    C. Breuil, Sur quelques répresentations modulaires et p-adiques de GL2(Qp) II, Journal of the Institute of Mathematics of Jussieu 2 (2003), 1–36.CrossRefGoogle Scholar
  8. [Bre]
    C. Breuil, Diagrammes de diamonds and (φ, Γ)-modules Israel Journal of Mathematics 182 (2011), 349–382.MathSciNetCrossRefGoogle Scholar
  9. [BP]
    C. Breuil and V. Paskunas, Towards a modulo p Langlands correspondence for GL2 Memoirs of the American Mathematical Society Society 216 (2012).Google Scholar
  10. [Col]
    P. Colmez, Représentations de GL2(Qp) et (ϕ, Γ)-modules, Astérisque 330 (2010), 281–509.MathSciNetGoogle Scholar
  11. [DDSMS]
    J. Dixon, M. Du Sautoy, A. Mann and D. Segal Analytic pro p-groups, Cambridge studies in advanced mathematics 61, Cambridge University Press, 2003.MATHGoogle Scholar
  12. [Dou]
    G. Dousmains, On reduction of families of crystalline Galois representations Documenta Mathematica 15 (2010), 873–938.MathSciNetGoogle Scholar
  13. [Fon]
    J-M. Fontaine Représentations p-adiques des corps locaux I, The Grothendieck Festschrift vol. II, Progress in Mathematics, Birkhäuser, Boston 87 1990, 249–309.MATHGoogle Scholar
  14. [Eme]
    M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definitions and first properties, Astérisque 331 (2010), 335–381.MathSciNetMATHGoogle Scholar
  15. [Gee]
    T. Gee, On the weights of mod-p Hilbert modular forms, Inventiones mathematicae 184 (2011), 1–46.MathSciNetCrossRefMATHGoogle Scholar
  16. [Her1]
    F. Herzig, A Satake isomorphism in characteristic p. Computational mathematics 147 (2011), 263–283.Google Scholar
  17. [Her2]
    F. Herzig, The classification of irreducible admissible mod-p representations of a p-adic GLn, Inventiones mathematicae 186 (2011), 373–434.MathSciNetCrossRefMATHGoogle Scholar
  18. [Hu]
    Y. Hu, Sur quelques représentation supersingulières de GL2(Qpf), Journal of Algebra 324 (2010), 1577–1615.MathSciNetCrossRefGoogle Scholar
  19. [Hu1]
    Y. Hu, Diagrammes canoniques et représentations modulo p de GL2(F), Journal of the Institute of Mathematics of Jussieu 11 (2012), 67–118MathSciNetCrossRefMATHGoogle Scholar
  20. [HMS]
    Y. Hu, S. Morra and B. Schraen, Sur la fidelité de certaines représentations de GL2(F) sous une algèbre d’Iwasawa, The Rendiconti del Seminario Matematico della Universitá di Padova 131 (2014), 49–65.CrossRefMATHGoogle Scholar
  21. [Mo1]
    S. Morra, Invariant elements for p-modular representations of GL2(Qp), Transactions of the American Mathematical Society, 365 (2013), 6625–6667.MathSciNetCrossRefMATHGoogle Scholar
  22. [Mo2]
    S. Morra On some representations of the Iwahori subgroup, Journal of Number Theory 132 (2012), 1074–1150.MathSciNetCrossRefMATHGoogle Scholar
  23. [RZ]
    L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik Vol. 40, Springer.Google Scholar
  24. [Sch]
    B. Schraen, Sur la présentation des représentations supersingulières de GL2(F), Journal für die reine und angewandte Mathematik, to appearGoogle Scholar
  25. [Ser77]
    J-P. Serre, Arbres, amalgames, SL2, Astérisque 46 (1983).Google Scholar
  26. [Ven]
    O. Venjakob, A noncommutative Weierstrass preparation theorem and applications to Iwasawa theory, Journal für die reine und angewandte Mathematik 559 (2003), 153–191.MathSciNetMATHGoogle Scholar
  27. [Wil]
    J. S. Wilson, Profinite groups, London Mathematical Society 19, Oxford University Press, 1998.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Université Montpellier 2MontpellierFrance

Personalised recommendations