Skip to main content
Log in

Dirichlet problem for f-minimal graphs

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the asymptotic Dirichlet problem for f-minimal graphs in Cartan-Hadamard manifolds M.f-minimal hypersurfaces are natural generalizations of self-shrinkers which play a crucial role in the study of mean curvature flow. In the first part of this paper, we prove the existence of f-minimal graphs with prescribed boundary behavior on a bounded domain Ω ⊂ M under suitable assumptions on f and the boundary of Ω. In the second part, we consider the asymptotic Dirichlet problem. Provided that f decays fast enough, we construct solutions to the problem. Our assumption on the decay of f is linked with the sectional curvatures ofM. In view of a result of Pigola, Rigoli and Setti, our results are almost sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-B. Casteras, I. Holopainen and J. B. Ripoll, Convexity at infinity in Cartan-Hadamard manifolds and applications to the asymptotic Dirichlet and Plateau problems, Math. Z. 290 (2018), 221–250.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-B. Casteras, I. Holopainen and J. B. Ripoll, On the asymptotic Dirichlet problem for the minimal hypersurface equation in a Hadamard manifold, Potential Anal. 47 (2017), 485–501.

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Cheng, T. Mejia and D. Zhou, Eigenvalue estimate and compactness for closed f -minimal surfaces, Pacific J. Math. 271 (2014), 347–367.

    Article  MathSciNet  MATH  Google Scholar 

  4. X. Cheng, T. Mejia and D. Zhou, Simons-type equation for f -minimal hypersurfaces and applications, J. Geom. Anal. 25 (2015), 2667–2686.

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Cheng, T. Mejia and D. Zhou, Stability and compactness for complete f -minimal surfaces, Trans. Amer. Math. Soc. 367 (2015), 4041–4059.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. H. Colding and W. P. Minicozzi, II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), 755–833.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. H. Colding and W. P. Minicozzi, II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), 463–475.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Dajczer and J. H. de Lira, Entire unbounded constant mean curvature Killing graphs, Bull. Braz. Math. Soc. (N.S.) 48 (2017), 187–198.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Dajczer, J. H. de Lira and J. Ripoll, An interior gradient estimate for the mean curvature equation of Killing graphs and applications, J. Anal. Math. 129 (2016), 91–103.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Dajczer, P. A. Hinojosa and J. H. de Lira, Killing graphs with prescribed mean curvature, Calc. Var. Partial Differential Equations 33 (2008), 231–248.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Eberlein and B. ONeill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2) 130 (1989), 453–471.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  14. E. M. Guio and R. Sa Earp, Errata: “Existence and non-existence for a mean curvature equation in hyperbolic space”, Commun. Pure Appl. Anal. 4 (2005), 549–568, Commun. Pure Appl. Anal. 7 (2008), 465.

    MathSciNet  Google Scholar 

  15. I. Holopainen and A. Vähäkangas, Asymptotic Dirichlet problem on negatively curved spaces, J. Anal. 15 (2007), 63–110.

    MathSciNet  MATH  Google Scholar 

  16. D. Impera and M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersur-faces, Geom. Dedicata 178 (2015), 21–47.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, in Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), American Mathematical Society, Providence, RI, 1986, pp. 81–89.

    Chapter  Google Scholar 

  18. Y. Li and L. Nirenberg, Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29 (2005), 257–264.

    MathSciNet  Google Scholar 

  19. P. Mastrolia, D. D. Monticelli and F. Punzo, Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds, Adv. Differential Equations 23 (2018), 89–108.

    MathSciNet  MATH  Google Scholar 

  20. S. Pigola, M. Rigoli and A. G. Setti, Some remarks on the prescribed mean curvature equation on complete manifolds, Pacific J. Math. 206 (2002), 195–217.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × R, Pure Appl. Math. Q. 3 (2007), 785–800.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Wang. A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011), 297–303.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko Heinonen.

Additional information

J.-B. C. supported by MIS F.4508.14 (FNRS).

E. H. supported by Jenny and Antti Wihuri Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casteras, JB., Heinonen, E. & Holopainen, I. Dirichlet problem for f-minimal graphs. JAMA 138, 917–950 (2019). https://doi.org/10.1007/s11854-019-0051-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0051-5

Navigation