Skip to main content
Log in

Boundary Gauss–Lucas type theorems on the disk

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The classical Gauss—Lucas theorem describes the location of the critical points of a polynomial. There is also a hyperbolic version, due to Walsh, in which the role of polynomials is played by finite Blaschke products on the unit disk. We consider similar phenomena for generic inner functions, as well as for certain “locally inner” self-maps of the disk. More precisely, we look at a unit-norm function fH that has an angular derivative on a set of positive measure (on the boundary) and we assume that its inner factor, I, is nontrivial. Under certain conditions to be discussed, it follows that f′ must also have a nontrivial inner factor, say J, and we study the relationship between the boundary singularities of I and J. Examples are furnished to show that our sufficient conditions cannot be substantially relaxed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Ahern and D. N. Clark, On inner functions with H p-derivative, MichiganMath. J. 21 (1974), 115–127.

    MATH  Google Scholar 

  2. R. B. Burckel, An Introduction to Classical Complex Analysis, Vol. I, Academic Press, New York, 1979.

    Book  MATH  Google Scholar 

  3. C. Carathéodory, Theory of Functions of a Complex Variable, Vol. II, Chelsea Publ. Co., New York, 1954.

    MATH  Google Scholar 

  4. K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. M. Dyakonov, Approximate identities and geometric means of smooth positive functions, J. Anal. Math. 78 (1999), 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  6. K.M. Dyakonov, A reverse Schwarz-Pick inequality, Comput.Methods Funct. Theory 13 (2013), 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. M. Dyakonov, A characterization of Möbius transformations, C. R. Math. Acad. Sci. Paris 352 (2014), 593–595.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. M. Dyakonov and A. Nicolau, Free interpolation by nonvanishing analytic functions, Trans. Amer. Math. Soc. 359 (2007), 4449–4465.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. B. Garnett, Bounded Analytic Functions, Springer, New York, 2007.

    MATH  Google Scholar 

  10. P. Gorkin and R. Mortini, Asymptotic interpolating sequences in uniform algebras, J. London Math. Soc. 67 (2003), 481–498.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. P. Havin, A generalization of the Privalov-Zygmund theorem on the modulus of continuity of the conjugate function, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), 252–258 and 265–287.

    MathSciNet  Google Scholar 

  12. V. P. Havin and F. A. Shamoyan, Analytic functions with Lipschitz moduli of the boundary values, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 19 (1970), 237–239.

    Google Scholar 

  13. D. Kraus, O. Roth and S. Ruscheweyh, A boundary version of Ahlfors’ lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps, J. Anal. Math. 101 (2007), 219–256.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Sarason, Angular derivatives via Hilbert space, Complex Variables Theory Appl. 10 (1988), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.

    MATH  Google Scholar 

  16. T. Sheil-Small, Complex Polynomials, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  17. N. A. Shirokov, Analytic Functions Smooth Up to the Boundary, Springer-Verlag, Berlin, 1988.

    Book  MATH  Google Scholar 

  18. C. Sundberg and T. H. Wolff, Interpolating sequences for QAB, Trans. Amer. Math. Soc. 276 (1983), 551–581.

    MathSciNet  MATH  Google Scholar 

  19. J. L. Walsh, Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle, Bull. Amer. Math. Soc. 45 (1939), 462–470.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin M. Dyakonov.

Additional information

Supported in part by grant MTM2017-83499-P from El Ministerio de Economía y Competitividad (Spain) and grant 2017-SGR-358 from AGAUR (Generalitat de Catalunya).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakonov, K.M. Boundary Gauss–Lucas type theorems on the disk. JAMA 138, 717–739 (2019). https://doi.org/10.1007/s11854-019-0042-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0042-6

Navigation