Skip to main content
Log in

Banach algebras of weakly differentiable functions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The question is addressed of when a Sobolev type space, built upon a general rearrangement-invariant norm, on an n-dimensional domain, is a Banach algebra under pointwise multiplication of functions. A sharp balance condition among the order of the Sobolev space, the strength of the norm, and the (ir)regularity of the domain is provided for the relevant Sobolev space to be a Banach algebra. The regularity of the domain is described in terms of its isoperimetric function. Related results on the boundedness of the multiplication operator into lower-order Sobolev type spaces are also established. The special cases of Orlicz-Sobolev and Lorentz-Sobolev spaces are discussed in detail. New results for classical Sobolev spaces on possibly irregular domains follow as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. A. Alvino, V. Ferone and G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal. 5 (1996), 273–299.

    MathSciNet  MATH  Google Scholar 

  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000.

    MATH  Google Scholar 

  4. T. Aubin, Problèmes isopérimetriques et espaces de Sobolev, J. Diff. Geom. 11 (1976), 573–598.

    Article  MATH  Google Scholar 

  5. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam. 22 (2006), 993–1067.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bartsch, T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations 18 (2003), 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, MA, 1988.

    MATH  Google Scholar 

  8. C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1–67.

    MathSciNet  MATH  Google Scholar 

  9. S. G. Bobkov and C. Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer.Math. Soc. 129 (1997), no. 616.

    MathSciNet  MATH  Google Scholar 

  10. S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to sharp Sobolev inequalities, Ann. Mat. Pura Appl. 187 (2008), 389–384.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Buckley and P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (1995), 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Buckley and P. Koskela, Criteria for embeddings of Sobolev-Poincaré type, Int. Math. Res. Not. 18 (1996), 881–902.

    Article  MATH  Google Scholar 

  13. Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer, Berlin, 1988.

    Book  MATH  Google Scholar 

  14. L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser, Basel, 2007.

    MATH  Google Scholar 

  15. E. A. Carlen and C. Kerce, On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Chavel, Isoperimetric Inequalities: Differential Geometric Aspects and Analytic Perspectives, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  17. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis: A Symposium in Honor of Salomon Bochner (PMS-31), Princeton University Press, Princeton, NJ, 1970, pp. 195–199.

    Google Scholar 

  18. A. Cianchi, A sharp embedding theorem for Orlicz.Sobolev spaces, Indiana Univ. Math. J. 45 (1996), 39–65.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Cianchi, Symmetrization and second-order Sobolev inequalities, Ann. Mat. Pura Appl. 183 (2004), 45–77.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoam. 20 (2004), 427–474.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Cianchi, Orlicz-Sobolev algebras, Potential Anal. 28 (2008), 379–388.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, The sharp Sobolev inequality in quantitative form, J. Eur.Math. Soc. 11 (2009), 1105–1139.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Cianchi and L. Pick, Sobolev embeddings into BMO, VMO and L , Ark. Mat. 36 (1998), 317–340.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Cianchi and L. Pick, Optimal Gaussian Sobolev embeddings, J. Funct. Anal. 256 (2009), 3588–3642.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Cianchi, L. Pick and L. Slavíková, Higher-order Sobolev embeddings and isoperimetric inequalities, Adv. Math. 273 (2015), 568–650.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. 5 (1958), 33–44.

    MathSciNet  MATH  Google Scholar 

  27. D. E. Edmunds, R. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangementinvariant quasinorms, J. Funct. Anal. 170 (2000), 307.355.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities, Arch. Ration. Mech. Anal. 206 (2012), 821.851.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Federer and W. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Gazzola and H.-C. Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, NoDEA Nonlinear Differential Equations Appl. 8 (2001), 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  32. A. Grygor’yan, Isoperimetric inequalities and capacities on Riemannian manifolds, in The Maz’ya Anniversary Collection, Vol. 1, Birkhäuser, Basel, 1999, pp. 139–153.

    Article  MathSciNet  Google Scholar 

  33. P. Hajłasz and P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains, J. London Math. Soc. 58 (1998), 425.450.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Hebey, Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, Providence, RI, 1999.

    MATH  Google Scholar 

  35. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715.727.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Hoffmann and J. Spruck, A correction to: “Sobolev and isoperimetric inequalities for Riemannian submanifolds” (Comm. Pure Appl. Math. 27 (1974)715–725), Comm. Pure Appl. Math. 28 (1975), 765–766.

    Article  MathSciNet  Google Scholar 

  37. R. Kerman and L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535–570.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwend. 19 (2000), 369–380.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. S. Klimov, Imbedding theorems and geometric inequalities, Izv. Akad. Nauk SSSR 40 (1976), 645–671.

    MathSciNet  Google Scholar 

  40. V. I. Kolyada, Estimates on rearrangements and embedding theorems, Mt. Sb. 136 (1988), 3–23.

    Google Scholar 

  41. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 (1985), 45–121.

    Article  MathSciNet  MATH  Google Scholar 

  42. P.-L. Lions, F. Pacella and M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J. 37 (1988), 301–324.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Lutwak, D. Yang and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Diff. Geom. 62 (2002), 17–38.

    Article  MATH  Google Scholar 

  44. L. Maligranda and L.-E. Persson, Generalized duality of some Banach function spaces, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), 323–338.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. G. Maz’ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 (1960), 527–530.

    Google Scholar 

  46. V. G. Maz’ya, On p-conductivity and theorems on embedding certain functional spaces into a C-space, Dokl. Akad. Nauk. SSSR 140 (1961), 299–302.

    MathSciNet  Google Scholar 

  47. V. G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin, 2011.

    MATH  Google Scholar 

  48. V.G. Maz’ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  49. E. Milman, On the role of convexity in functional and isoperimetric inequalities, Proc. London Math. Soc. 99 (2009), 32–66.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Moser, A sharp form of an inequality by Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), 391–467.

    MathSciNet  MATH  Google Scholar 

  52. L. Pick, A. Kufner, O. John and S. Fučík, Function Spaces, Volume 1, Walter De Gruyter, Berlin, 2013.

    MATH  Google Scholar 

  53. L. Saloff-Coste, Aspects of Sobolev-type Inequalities, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  54. C. A. Swanson, The best Sobolev constant, Appl. Anal. 47 (1992), 227–239.

    Article  MathSciNet  MATH  Google Scholar 

  55. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Zhang, The affine Sobolev inequality, J. Diff. Geom. 53 (1999), 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  57. W. P. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cianchi.

Additional information

This research was partly supported by the Research Project of Italian Ministry of University and Research (MIUR) “Elliptic and parabolic partial differential equations: geometric aspects, related inequalities, and applications” 2012, by GNAMPA of Italian INdAM (National Institute of High Mathematics), and by the grant P201-13-14743S of the Grant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cianchi, A., Pick, L. & Slavíková, L. Banach algebras of weakly differentiable functions. JAMA 138, 473–511 (2019). https://doi.org/10.1007/s11854-019-0030-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0030-x

Navigation