Skip to main content
Log in

On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the problem of finding the optimal exponent in the Moser-Trudinger inequality

$${\rm{sup}}\left\{ {\left. {\int_{\rm{\Omega }} {{\rm{exp}}\left( {\alpha \;{\rm{|}}u{{\rm{|}}^{{N \over {N - s}}}}} \right)} } \right|u \in \widetilde{W}_0^{s,p}({\rm{\Omega }}),\;{{[u]}_{{W^{s,p}}({\mathbb{R}^N})}} \le 1} \right\} < \infty $$

. Here Ω is a bounded domain of ℝN (N ≥ 2), s ∊ (0, 1), sp = N, \(\widetilde{W}_0^{s,p}({\rm{\Omega }})\) is a Sobolev-Slobodeckij space, and \({[ \cdot ]_{{W^{s,p}}({\mathbb{R}^N})}}\) is the associated Gagliardo seminorm. We exhibit an explicit exponent α*s,N > 0, which does not depend on Ω, such that the Moser-Trudinger inequality does not hold true for α ∊ (α*s,N, +∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, DC, 1964.

    MATH  Google Scholar 

  2. D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), 385–398.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. J. Almgren, Jr. and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683–773.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, pp. 439–455.

    Google Scholar 

  5. L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), 419–458.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Brasco, E. Parini and M. Squassina Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), 1813–1845.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Carleson and S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113–127.

    MathSciNet  MATH  Google Scholar 

  8. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2007.

    MATH  Google Scholar 

  10. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing Inc., Boston, MA, 1985.

    MATH  Google Scholar 

  11. A. Hyder, Moser functions and fractional Moser-Trudinger type inequalities, Nonlinear Anal. 146 (2015), 185–210.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Iula, A. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations 29 (2016), 455–492.

    MathSciNet  MATH  Google Scholar 

  13. A. Ivic, The Riemann Zeta Function, Theory and Application, Dover Publications, NY, 2003.

    MATH  Google Scholar 

  14. S. Kesavan, Symmetrizations and Applications, World Scientific, Hackensack, NJ, 2006.

    Book  MATH  Google Scholar 

  15. T. Kurokawa, On relations between Bessel potential spaces and Riesz potential spaces, Potential Anal. 12 (2000), 299–323.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Lin, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc. 348 (1996), 2663–2671.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal. 127 (2015), 263–278.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), 279–317.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series, Volume 1: Elementary Functions, Taylor & Francis, London, 1998.

    MATH  Google Scholar 

  21. H. Triebel, Theory of function spaces, Birkäuser/Springer, Basel, 2010.

    MATH  Google Scholar 

  22. N. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484.

    MathSciNet  MATH  Google Scholar 

  23. J. Xiao and Z. Zhai, Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms, J. Math. Sci. 166 (2010), 357–376.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enea Parini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parini, E., Ruf, B. On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces. JAMA 138, 281–300 (2019). https://doi.org/10.1007/s11854-019-0029-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0029-3

Navigation