Skip to main content
Log in

Nonlocal perimeter, curvature and minimal surfaces for measurable sets

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we study the nonlocal perimeter associated with a nonnegative radial kernel J: ℝN → ℝ, verifying NJ(z)dz = 1. The nonlocal perimeter studied here is given by the interactions (measured in terms of the kernel J) of particles from the outside of a measurable set E with particles from the inside, that is,

$${P_J}(E): = \int_E {\left( {\int_{{\mathbb{R}^N}\backslash E} {J(x - y)dy} } \right)dx} .$$

As a consequence of a result by Bourgain, Brezis and Mironescu in 2001 and Dávila in 2002, when the kernel J is appropriately rescaled, this nonlocal perimeter converges to the classical local perimeter. We prove that an isoperimetric inequality also holds for it. Associated with the kernel J and the previous definition of perimeter we can consider minimal surfaces. In connexion with minimal surfaces we introduce the concept of J-mean curvature at a point x, and we show that again under rescaling we can recover the usual notion of mean curvature. In addition, we study the situation analogous to a Cheeger set in this nonlocal context and show that a set Ω is J-calibrable (Ω is a J-Cheeger set of itself) if and only if there exists τ such that τ(x)= 1 if x ∊ Ω satisfying \(-{\lambda }_\Omega^J\tau\in{\Delta_1^J}\chi_\Omega\), here \({\lambda }_\Omega^J\) is the J-Cheeger constant \(\lambda _{\rm{\Omega }}^J = {{{P_J}({\rm{\Omega }})} \over {{\rm{|\Omega |}}}}\) and Δ J1 is given, formally, by

$${\rm{\Delta }}_1^Ju(x) = \int_{{\mathbb{R}^N}} {J(x - y){{u(y) - u(x)} \over {{\rm{|}}u(y) - u(x){\rm{|}}}}dy} .$$

Moreover, we also provide a result on J-calibrable sets and the nonlocal J-mean curvature that says that a J-calibrable set cannot include points with large curvature. Concerning examples, we show that balls are J-calibrable for kernels J that are radially nonincresing, while stadiums are J-calibrable when they are small but not when they are large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature, Numer. Funct. Anal. Optim. 35 (2014), 793–815.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets inN, Math. Ann. 332 (2005), 329–366.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009), 32–44.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191–246.

    MathSciNet  MATH  Google Scholar 

  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.

    MATH  Google Scholar 

  6. L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), 377–403.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Ambrosio, J. Bourgain, H. Brezis and A. Figalli, BMO-type norms related to the perimeter of sets, Comm. Pure Appl. Math. 69 (2016), 1062–1086.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Andreu, V. Caselles, and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Birkhäuser, Basel, 2004.

    Book  MATH  Google Scholar 

  9. F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal. 40 (2008/09), 1815–1851.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl. 90 (2008), 201–227.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, The limit as p →in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations 35 (2009), 279–316.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo, Nonlocal Diffusion Problems, American Mathematical Society, Providence, RI, 2010.

    Book  MATH  Google Scholar 

  13. J-F. Aujol, G. Gilboa and N. Papadakis, Fundamentals of non-local total variation spectral theory, in Scale and Variational Methods in Computer Vision, Springer, Cham, 2015, pp. 66–77.

    Chapter  Google Scholar 

  14. Ph. Bénilan and M. G. Crandall, Completely accretive operators, in Semigroups Theory and Evolution Equations (Delft, 1989), Marcel Dekker, New York, 1991, pp. 41–75.

    Google Scholar 

  15. J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations. A Volume in Honour of A. Bensoussan’s 60th Birthday, IOS Press, 2001, pp. 439–455.

  16. L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), 419–458.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Brezis, Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  18. H. Brezis, How to recognize constant functions, Uspekhi Mat. Nauk 57 (2002), no. 4, 59–74.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York-Dordrecht-Heidelberg-London, 2011.

    MATH  Google Scholar 

  20. H. Brezis, New approximations of the total variation and filters in imaging, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), 223–240.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Brezis and H.-M. Nguyen, Two subtle convex nonlocal approximations of the BV-norm, Nonlinear Anal. 137 (2016), 222–245.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111–1144.

    MathSciNet  MATH  Google Scholar 

  23. L. Caffarelli and P.E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal. 195 (2010), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Cafarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 41 (2011), 203–240.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Dávila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519–527.

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  27. G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces, in Geometric Properties for Parabolic and Elliptic PDE’s, Springer, Milano, 2013, pp. 117–130.

    Chapter  Google Scholar 

  28. V. Fridman, B. Kawohl, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae 44 (2003), 659–667.

    MathSciNet  MATH  Google Scholar 

  29. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, SIAM Multi-scale Model. Simul., 7 (2008), 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Giusti, Minimal Surface and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.

    Book  MATH  Google Scholar 

  31. D. Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max ow min cut theorem, Arch. Math. (Basel) 87 (2006), 75–85.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.

    MATH  Google Scholar 

  33. C. Imbert, Level set approach for fractional mean curvature flows, Interface Free Bound. 11 (2009), 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. H. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, RI, 1987.

    MATH  Google Scholar 

  35. A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations 19 (2004), 229–255.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Ponce, An estimate in the spirit of Poincare’s inequality, J. Eur. Math. Soc. 6 (2004), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  37. O. Savin, E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differential Equations 48 (2013), 33–39.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Valdinoci, A fractional framework for perimeter and phase transitions, Milan J. Math. 81 (2013), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Van Schaftingen and M. Willem, Set transformations, symmetrizations and isoperimetric inequalities, in Nonlinear Analysis and Applications to Physical Sciences, Springer Italia, Milan, 2004, pp. 135–152.

    Google Scholar 

  40. A. Visintin, Nonconvex functionals related to multiphase systems, SIAM J. Math. Anal. 21 (1990), 1281–1304.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Visintin, Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math. 8 (1991), 175–201.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors have been partially supported by the Spanish MEC and FEDER, project MTM2015-70227-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Mazón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazón, J.M., Rossi, J.D. & Toledo, J. Nonlocal perimeter, curvature and minimal surfaces for measurable sets. JAMA 138, 235–279 (2019). https://doi.org/10.1007/s11854-019-0027-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0027-5

Navigation