Skip to main content
Log in

The discrete spherical averages over a family of sparse sequences

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We initiate the study of the p(ℤd)-boundedness of the arithmetic spherical maximal function over sparse sequences. We state a folklore conjecture for lacunary sequences, a key example of Zienkiewicz and prove new bounds for a family of sparse sequences that achieves the endpoint of the Magyar-Stein-Wainger theorem for the full discrete spherical maximal function in [MSW02]. Perhaps our most interesting result is the boundedness of a discrete spherical maximal function in ℤ4 over an infinite, albeit sparse, set of radii. Our methods include the Kloosterman refinement for the Fourier transform of the spherical measure (introduced in [Mag07]) and Weil bounds for Kloosterman sums which are utilized by a new further decomposition of spherical measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986), 69–85.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. P. Calderón, Lacunary spherical means, Illinois J. of Math. 23 (1979), 476–484.

    Article  MathSciNet  Google Scholar 

  4. R. R. Coifman and Guido Weiss, Review: R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc. 84 (1978), 242–250.

    Article  MathSciNet  Google Scholar 

  5. H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Cambridge University Press, Cambridge, 2005

    Book  MATH  Google Scholar 

  6. E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

  7. D. R. Heath-Brown, Cubic forms in ten variables, Proc. London Math. Soc. (3) 47 (1983), 225–257.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. R. Heath-Brown, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math. 481 (1996), 149–206.

    MathSciNet  MATH  Google Scholar 

  9. K. Hughes, Problems and Results Related to Waring’s Problem: Maximal Functions and Ergodic Averages, Ph.D. thesis, Princeton University, Princeton, NJ, 2012.

    Google Scholar 

  10. K. Hughes, Maximal functions and ergodic averages related to Waring’s problem, Isr. J. Math. 217 (2017), 17–55.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proc. Amer. Math. Soc. 132 (2004), 1411–1417.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. D. Kloosterman, On the representation of numbers in the form ax 2 + by 2 + cz 2 + dt 2, Acta Math. 49 (1927), 407–464.

    Article  MathSciNet  Google Scholar 

  13. A. Magyar, L p-bounds for spherical maximal operators on Z n, Rev. Mat. Iberoamericana 13 (1997), 307–317.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Magyar, Diophantine equations and ergodic theorems, Amer. J. Math. 124 (2002), 921–953.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Magyar, On the distribution of lattice points on spheres and level surfaces of polynomials, J. Number Theory 122 (2007), 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Magyar, E. M. Stein, and S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2) 155 (2002), 189–208.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. M. Stein, Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174–2175.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Seeger, T. Tao, and J. Wright, Endpoint mapping properties of spherical maximal operators, J. Inst. Math. Jussieu 2 (2003), 109–144.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Seeger, S. Wainger, and J. Wright, Pointwise convergence of lacunary spherical means, in Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), American Mathematical Society, Providence, RI, 2003, pp. 341–351.

    Chapter  Google Scholar 

  20. A. Seeger, T. Tao, and J. Wright, Pointwise convergence of spherical means, Math. Proc. Cambridge Philos. Soc. 118 (1995), 115–124.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Lillian Pierce for discussions on the arithmetic lacunary spherical maximal function and for pointing out a critical mistake in a previous version of this paper, and his advisor, Elias Stein, for introducing him to the problem. The author would also like to thank Roger Heath-Brown for a discussion on the limitations of the circle method, Peter Sarnak for discussions regarding Kloosterman sums and Jim Wright for explaining aspects of the continuous lacunary spherical maximal function. And a special thanks to Lutz Helfrich, James Maynard and Kaisa Matomäki at the Hausdorff Center for Mathematics’s ENFANT and ELEFANT conferences in July 2014 for pointing out the family of sequences used in Theorem 2.

Finally the author thanks Jonathan Hickman and Marina Iliopoulou for their feedback on a previous draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Hughes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, K. The discrete spherical averages over a family of sparse sequences. JAMA 138, 1–21 (2019). https://doi.org/10.1007/s11854-019-0020-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0020-z

Navigation