Cyclic polynomials in anisotropic Dirichlet spaces

  • Greg Knese
  • Łukasz KosińskiEmail author
  • Thomas J. Ransford
  • Alan A. Sola


Consider the Dirichlet-type space on the bidisk consisting of holomorphic functions \(f(z_1,z_2):=\sum_{k,l\geq0}a_{kl}z_1^kz_2^l\) such that
Here the parameters α1, α2 are arbitrary real numbers. We characterize the polynomials that are cyclic for the shift operators on this space. More precisely, we show that, given an irreducible polynomial p(z1, z2) depending on both z1 and z2 and having no zeros in the bidisk:
  • if α1 + α2 ≤ 1, then p is cyclic;

  • if α1 + α2 > 1 and min{α1, α2} ≤ 1, then p is cyclic if and only if it has finitely many zeros in the two-torus \(\mathbb{T}^2\);

  • if min{α1, α2} > 1, then p is cyclic if and only if it has no zeros in \(\mathbb{T}^2\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Agler and J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, Vol. 44, American Mathematical Society, Providence, RI, 2004.Google Scholar
  2. [2]
    C. Bénéteau, A. A. Condori, C. Liaw, D. Seco and A. A. Sola, Cyclicity in Dirichlet-type spaces and extremal polynomials II: functions on the bidisk, Pacific J. Math. 276 (2015), 35–58.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Bénéteau, G. Knese, Ł. Kosiński, C. Liaw, D. Seco and A. Sola, Cyclic polynomials in two variables, Trans. Amer. Math. Soc. 368 (2016), 8737–8754.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269–304.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Chattopadhyay, B. K. Das, J. Sarkar and S. Sarkar, Wandering subspaces of the Bergman space and the Dirichlet space over Dn, Integral Equations Operator Theory 79 (2014), 567–577.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. El-Fallah, K. Kellay, J. Mashreghi and T. Ransford, A Primer on the Dirichlet Space, Cambridge Tracts in Math., Vol. 203, Cambridge University Press, Cambridge, 2014.zbMATHGoogle Scholar
  7. [7]
    J. E. Fornaess and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Princeton University Press, Princeton, NJ, 1987.zbMATHGoogle Scholar
  8. [8]
    R. Gelca, Rings with topologies induced by spaces of functions, Houston J. Math. 21 (1995), 395–405.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Hedenmalm, Outer functions in function algebras on the bidisc, Trans. Amer. Math. Soc. 306 (1988), 697–714.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.CrossRefzbMATHGoogle Scholar
  11. [11]
    D. Jupiter and D. Redett, Multipliers on Dirichlet type spaces, Acta Sci. Math. (Szeged) 72 (2006), 179–203.MathSciNetzbMATHGoogle Scholar
  12. [12]
    H. T. Kaptanoğlu, Möbius-invariant Hilbert spaces in polydiscs, Pacific J. Math. 163 (1994), 337–360.Google Scholar
  13. [13]
    G. Knese, Polynomials defining distinguished varieties, Trans. Amer. Math. Soc 362 (2010), 5635–5655.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G. Knese, Polynomials with no zeros on the bidisk, Anal. PDE 3 (2010), 109–149.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. G. Krantz and H. R. Parks, A Primer of Real analytic Functions, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Boston, MA, 2002.CrossRefGoogle Scholar
  16. [16]
    S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, Basel, 1991.CrossRefzbMATHGoogle Scholar
  17. [17]
    V. Mandrekar, The validity of Beurling theorems in polydisks, Proc. Amer. Math. Soc. 103 (1988), 145–148.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. E. McCarthy, Shining a Hilbertian lamp on the bidisk. in Topics in complex analysis and operator theory, Contemp. Math., Vol. 561, American Mathematical Soceity, Providence, RI, 2012, pp. 49–65CrossRefzbMATHGoogle Scholar
  19. [19]
    J. H. Neuwirth, J. Ginsberg, and D. J. Newman, Approximation by { f (kx)}, J. Funct. Anal. 5 (1970), 194–203.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York–Amsterdam, 1969.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Greg Knese
    • 1
  • Łukasz Kosiński
    • 2
    Email author
  • Thomas J. Ransford
    • 3
  • Alan A. Sola
    • 4
  1. 1.Department of MathematicsWashington University in St. LouisSt. LouisUSA
  2. 2.Institute of MathematicsJagiellonian UniversityKrakówPoland
  3. 3.Département de Mathématiques et de StatistiqueUniversité Laval, Pavillon Alexandre-VachonQuébec CityCanada
  4. 4.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA

Personalised recommendations