Skip to main content
Log in

Dynamics in the Szegő class and polynomial asymptotics

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We introduce the Szegő class, Sz(E), for an arbitrary Parreau–Widom set E ⊂ ℝ and study the dynamics of its elements under the left shift. When the direct Cauchy theorem holds on ℂ\E, we show that to each J ∈ Sz(E) there is a unique element J′ in the isospectral torus, TE, so that the left-shifts of J are asymptotic to the orbit {Jm} on TE. Moreover, we show that the ratio of the associated orthogonal polynomials has a limit, expressible in terms of Jost functions, as the degree n tends to ∞. This enables us to describe the large n behaviour of the orthogonal polynomials for every J in the Szegő class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Benzaid and D. A. Lutz, Asymptotic representation of solutions of perturbed systems of linear difference equations, Stud. Appl. Math. 77 (1987), 195–221.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Breuer, E. Ryckman, and B. Simon, Equality of the spectral and dynamical definitions of reflection, Comm. Math. Phys. 295 (2010), 531–550.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Carleson, On H in multiply connected domains, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols. I, II, Wadsworth, Belmont, CA, 1983, pp. 349–372.

    Google Scholar 

  4. J. S. Christiansen, Szegő’s theorem on Parreau–Widom sets, Adv. Math. 229 (2012), 1180–1204.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. S. Christiansen, B. Simon, and M. Zinchenko, Finite gap Jacobi matrices, I. The isospectral torus, Constr. Approx. 32 (2010), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. S. Christiansen, B. Simon, and M. Zinchenko, Finite gap Jacobi matrices, II. The Szegőclass, Constr. Approx. 33 (2011), 365–403.

    Article  MATH  Google Scholar 

  7. J. S. Christiansen, B. Simon, and M. Zinchenko, Finite gap Jacobi matrices, III. Beyond the Szegőclass, Constr. Approx. 35 (2012), 259–272.

    Article  MATH  Google Scholar 

  8. C. V. Coffman, Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc. 110 (1964), 22–51.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Craig, The trace formula for Schrödinger operators on the line, Comm. Math. Phys. 126 (1989), 379–407.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Damanik and B. Simon, Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegőasymptotics, Invent. Math. 165 (2006), 1–50.

    Article  MATH  Google Scholar 

  11. A. Eremenko and P. Yuditskii, Comb functions, Contemp. Math. 578 (2012), 99–118.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. L. Frank and B. Simon, Critical Lieb-Thirring bounds in gaps and the generalized Nevai conjecture for finite gap Jacobi matrices, Duke Math. J. 157 (2011), 461–493.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Gesztesy, M. Krishna, and G. Teschl, On isospectral sets of Jacobi operators, Comm. Math. Phys. 181 (1996), 631–645.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Gesztesy, K. A. Makarov, and M. Zinchenko, Essential closures and ACspectra for reflectionless CMV, Jacobi, and Schrödinger operators revisited, Acta Appl. Math. 103 (2008), 315–339.

    Article  MATH  Google Scholar 

  15. F. Gesztesy and P. Yuditskii, Spectral properties of a class of reflectionless Schrödinger operators, J. Funct. Anal. 241 (2006), 486–527.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Gesztesy and M. Zinchenko, Local spectral properties of reflectionless Jacobi, CMV, and Schrödinger operators, J. Diff. Eqs. 246 (2009), 78–107.

    Article  MATH  Google Scholar 

  17. M. Hasumi, Hardy Classes on Infinitely Connected Riemann Surfaces, Lecture Notes in Mathematics, Vol. 1027, Springer-Verlag, Berlin, 1983.

  18. M. Hayashi, An example of a domain of Parreau–Widom type, Complex Variables Theory Appl. 6 (1986), 73–80.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329–367.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Last and B. Simon, The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math. 98 (2006), 183–220.

    MATH  Google Scholar 

  21. D. S. Lubinsky and E. B. Saff, Szegőasymptotics for non-Szegőweights on [−1, 1], in Approximation Theory VI, Vol. II (College Station, TX, 1989), Academic Press, Boston, MA, 1989, pp. 409–412.

    Google Scholar 

  22. J. E. McMillan, Boundary behavior of a conformal mapping, Acta Math. 123 (1969), 43–67.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Nevai and W. Van Assche, Compact perturbations of orthogonal polynomials, Pacific J. Math. 153 (1992), 163–184.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Peherstorfer and P. Yuditskii, Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points, Proc. Amer. Math. Soc. 129 (2001), 3213–3220.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Peherstorfer and P. Yuditskii, Asymptotic behavior of polynomials orthonormal on a homogeneous set, J. Anal. Math. 89 (2003), 113–154.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Peherstorfer and P. Yuditskii, Remark on the paper “Asymptotic behavior of polynomials orthonormal on a homogeneous set”, arXiv:math. SP/0611856.

  27. A. Poltoratski and C. Remling, Reflectionless Herglotz functions and Jacobi matrices, Comm. Math. Phys. 288 (2009), 1007–1021.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Poltoratski and C. Remling, Approximation results for reflectionless Jacobimatrices, Int. Math. Res. Not. 16 (2011), 3575–3617.

    Article  MATH  Google Scholar 

  29. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, Vol. 299, Springer-Verlag, Berlin, 1992.

    Book  Google Scholar 

  30. C. Remling, The absolutely continuous spectrum of Jacobi matrices, Ann. of Math. 174 (2011), 125–171.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Remling, Uniqueness of reflectionless Jacobi matrices and the Denisov–Rakhmanov theorem, Proc. Amer. Math. Soc. 139 (2011), 2175–2182.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Remling, Topological properties of reflectionless Jacobi matrices, J. Approx. Theory 168 (2013), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Simon, Szegő’s Theorem and its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials, Princeton University Press, Princeton, NJ, 2011.

    MATH  Google Scholar 

  34. B. Simon and A. Zlatoš, Sum rules and the Szegőcondition for orthogonal polynomials on the real line, Comm. Math. Phys. 242 (2003), 393–423.

    Google Scholar 

  35. M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinitedimensional Jacobi inversion, and Hardy spaces of character-automorphic functions, J. Geom. Anal. 7 (1997), 387–435.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices,Mathematical Surveys and Monographs, Vol. 72, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  37. M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975.

    MATH  Google Scholar 

  38. A. Volberg and P. Yuditskii, On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length, Comm. Math. Phys. 226 (2002), 567–605.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Volberg and P. Yuditskii, Kotani–Last problem and Hardy spaces on surfaces of Widom type, Invent. Math. 197 (2014), 683–740.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Yuditskii, On the Direct Cauchy Theorem in Widom domains: Positive and negative examples, Comput. Methods Funct. Theory 11 (2011), 395–414.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob S. Christiansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, J.S. Dynamics in the Szegő class and polynomial asymptotics. JAMA 137, 723–749 (2019). https://doi.org/10.1007/s11854-019-0013-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0013-y

Navigation