Skip to main content
Log in

A symbolic representation for Anosov–Katok systems

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper is the first of a series of papers culminating in the result that measure preserving diffeomorphisms of the disc or 2-torus are unclassifiable. It addresses another classical problem: which abstract measure preserving systems are realizable as smooth diffeomorphisms of a compact manifold? The main result gives symbolic representations of Anosov–Katok diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšc. 23 (1970), 3–36.

    MathSciNet  MATH  Google Scholar 

  2. A. Arbieto and C. Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems 27 (2007), 1399–1417, With an appendix by David Diica and Yakov Simpson-Weller.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Avila, On the regularization of conservative maps, Acta Math. 205 (2010), 5–18.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Beleznay and M. Foreman, The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems 16 (1996), 929–962.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.-D. Bjork, Criteria for rank-one transformations to be weakly mixing, and the generating property, Ph. D. dissertation, University of California, Irvine, 2009.

    Google Scholar 

  6. B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems 24 (2004), 1477–1520.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. École Norm. Sup. (4) 38 (2005), 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. R. Fayad, M. Saprykina and A. Windsor, Non-standard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems 27 (2007), 1803–1818.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Fayad and R. Krikorian, Herman’s last geometric theorem, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 193–219.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Foreman, D. J. Rudolph and B. Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2) 173 (2011), no. 3, 1529–1586.

    MATH  Google Scholar 

  12. M. Foreman, D. Rudolph and B. Weiss, Universal models formeasure preserving transformations, preprint.

  13. M. Foreman and B. Weiss, From odometers to circular systems: A global structure theorem, preprint.

  14. M. Foreman and B. Weiss, Measure preserving diffeomorphisms of the torus are not classifiable, preprint.

  15. P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1960.

    MATH  Google Scholar 

  16. G. Hjorth, On invariants formeasure preserving transformations, Fund. Math. 169 (2001), 51–84.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 81–106.

    Google Scholar 

  18. A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, vol. 30, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  19. J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. von Neumann, Zur Operatorenmethode in der Klassischen Mechanik, Ann. of Math. (2) 33 (1932), 587–642.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, Vol. 2, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original.

  22. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York–Berlin, 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Foreman.

Additional information

The first author would like to acknowledge partial support under NSF award DMS 07010310

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foreman, M., Weiss, B. A symbolic representation for Anosov–Katok systems. JAMA 137, 603–661 (2019). https://doi.org/10.1007/s11854-019-0010-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0010-1

Navigation