Skip to main content
Log in

Geometric conditions for the L2-boundedness of singular integral operators with odd kernels with respect to measures with polynomial growth in ℝd

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let μ be a finite Radon measure in ℝd with polynomial growth of degree n, although not necessarily n-AD regular. We prove that under some geometric conditions on μ that are closely related to rectifiability and involve the so-called β-numbers of Jones, David and Semmes, all singular integral operators with an odd and sufficiently smooth Calderón-Zygmund kernel are bounded in L2(μ). As a corollary, we obtain a lower bound for the Lipschitz harmonic capacity of a compact set in ℝd only in terms of its metric and geometric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Azzam and X. Tolsa, Characterization of n-rectifiability in terms of Jones’ square function: Part II, Geom. Funct Anal. 25 (2015), 1371–1412.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. David, Wavelets and Singular Integrals on Curves and Surfaces, Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  3. G. David and P. Mattila, Removable sets for Lipschitz harmonic functions in the plane, Rev. Mat. Iberoamer. 16 (2000), 137–215.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. David and S. Semmes, Singular integrals and rectifiable sets in Rn: Beyond Lipschitz graphs, Astérisque No. 193 (1991).

    Google Scholar 

  5. G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Amer. Math. Soc., Providence, RI, 1993.

    Book  MATH  Google Scholar 

  6. K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  7. P. W. Jones, Rectifiable sets and the travelling salesman theorem, Invent. Math. 102 (1990), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Mattila and P. Paramonov, On geometric properties of harmonic Lip1-capacity, Pacific J. Math. 171, (1995), 469–491.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Nazarov, S. Treil, and A. Volberg, The T (b)-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin, CRM Preprint 519 (2002), 1–84.

    Google Scholar 

  10. P. V. Paramonov, Harmonic approximations in the C1-norm, Mat. Sb. 181 (1990), 1341–1365.

    MATH  Google Scholar 

  11. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  12. X. Tolsa. Littlewood-Paley theory and the T (1) theorem with non-doubling measures, Adv. Math. 164 (2001), 57–116.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), 105–149.

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Tolsa, L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels, Publ. Mat. 48 (2004), 445–479.

    Google Scholar 

  15. X. Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. of Math. 162 (2005), 1241–1302.

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Tolsa, Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality, Proc. Lond. Math. Soc. (3) 98 (2009), 393–426.

    MATH  Google Scholar 

  17. X. Tolsa, Analytic capacity, the Cauchy Transform, and Non-Homogeneous Calderón-Zygmund Theory, Birkhäuser Verlag, Basel, 2014.

    Book  MATH  Google Scholar 

  18. X. Tolsa, Characterization of n-rectifiability in terms of Jones’ square function: Part I, Calc. Var. Partial Differential Equations 54 (2015), 3643–3665.

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Tolsa, Rectifiable Measures, Square Functions Involving Densities, and the Cauchy Transform, Amer. Math. Soc., Providence, RI, 2016.

    MATH  Google Scholar 

  20. A. Volberg, Calderón-Zygmund Capacities and Operators on nonhomogeneous spaces, Amer. Math. Soc., Providence, RI, 2003.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Girela-Sarrión.

Additional information

Supported by project MTM-2010-16232 (MICINN, Spain) and partially supported by the ERC grant 320501 of the European Research Council (FP7/2007-2013), and projects MTM-2013-44304-P (MICINN, Spain) and 2014-SGR-75 (Catalonia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girela-Sarrión, D. Geometric conditions for the L2-boundedness of singular integral operators with odd kernels with respect to measures with polynomial growth in ℝd. JAMA 137, 339–372 (2019). https://doi.org/10.1007/s11854-018-0075-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0075-2

Navigation