Skip to main content
Log in

Uniform distribution of subpolynomial functions along primes and applications

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let H be a Hardy field (a field consisting of germs of real-valued functions at infinity that is closed under differentiation) and let fH be a subpolynomial function. Let P be the sequence of naturally ordered primes. We show that (f(n))n∈ℕ is uniformly distributed mod1 if and only if (f (p))p∈P is uniformly distributed mod 1. This result is then utilized to derive various ergodic and combinatorial statements which significantly generalize the results obtained in [BKMST].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Bergelson and I. J. Håland Knutson, Weak mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory Dynam. Syst. 29 (2009), 1375–1416.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Bergelson, G. Kolesnik, M. Madritsch, Y. Son, and R. Tichy, Uniform distribution of prime powers and sets of recurrence and van der Corput sets ink, Israel J. Math. 201 (2014), 729–760.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Bergelson and E. Lesigne, Van der Copurt sets in ℤ k, Colloquium Mathematicum 110 (2008), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695.

    Google Scholar 

  5. M. Boshernitzan, Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994), 225–240.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  7. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d’Analyse Math. 31 (1977), 204–256.

    Article  MATH  Google Scholar 

  8. S. W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  9. G. H. Hardy, Properties of logarithmico-exponential functions, Proc. London Math. Soc. 10 (1912), 54–90.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. H. Hardy, Orders of Infinity, 2nd edition, Cambridge Univ. Press, Cambridge, 1924.

    Google Scholar 

  11. T. Kamae and M. Mendès France, Van der Corput’s difference theorem, Israel J. Math. 31 (1977), 335–342.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. A. Karatsuba, Basic Analytic Number Theory, Springer-Verlag, Berlin-Heidelberg, 1992.

    Google Scholar 

  13. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure Appl.Math.Wiley- Interscience, New York, 1974.

    MATH  Google Scholar 

  14. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  15. G. Rhin, Sur la répartition modulo 1 des suites f (p), Acta. Arith. 23 (1973), 217–248.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Sárkőzy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125–149.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Sárkőzy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapst. Eötvös Sect. Math. 21 (1978), 45–53.

    MathSciNet  MATH  Google Scholar 

  18. A. Sárkőzy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), 355–386.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. G. van der Corput, Diophantische Ungleichungen I. Zur Gleichverteilung modulo Eins, Acta Math. 56 (1931), 373–456.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115.

    Article  MathSciNet  MATH  Google Scholar 

  21. I. M. Vinogradov, The method of trigonometric sums in the theory of numbers, Izdat. “Nauka”, Moscow, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghwan Son.

Additional information

The first author gratefully acknowledges the support of the NSF under grant DMS-1162073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergelson, V., Kolesnik, G. & Son, Y. Uniform distribution of subpolynomial functions along primes and applications. JAMA 137, 135–187 (2019). https://doi.org/10.1007/s11854-018-0068-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0068-1

Navigation