Skip to main content
Log in

Inverting the local geodesic X-ray transform on tensors

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove the local invertibility, up to potential fields, and stability of the geodesic X-ray transform on tensor fields of order 1 and 2 near a strictly convex boundary point, on manifolds with boundary of dimension n ≥ 3. We also present an inversion formula. Under the condition that the manifold can be foliated with a continuous family of strictly convex surfaces, we prove a global result which also implies a lens rigidity result near such a metric. The class of manifolds satisfying the foliation condition includes manifolds with no focal points, and does not exclude existence of conjugate points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics J. Inverse Ill-Posed Probl. 5 (1997), 487–490.

    MathSciNet  MATH  Google Scholar 

  2. I. N. Bernstein and M. L. Gerver, A problem of integral geometry for a family of geodesics and an inverse kinematic seismics problem, Dokl. Akad. Nauk SSSR 243 (1978), 302–305.

    MathSciNet  Google Scholar 

  3. J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), 943–948.

    Article  MathSciNet  Google Scholar 

  4. C. Croke, Conjugacy rigidity for non-positively curved graph manifolds, Ergodic Theory Dynam. Systems 24 (2004), 723–733.

    Article  MathSciNet  Google Scholar 

  5. C. Croke, Scattering rigidity with trapped geodesics, Ergodic Theory Dynam. Systems 34 (2016), 826–836.

    Article  MathSciNet  Google Scholar 

  6. C. Croke and P. Herreros, Lens rigidity with trapped geodesics in two dimensions, Asian J. Math. 20 (2016), 47–57.

    Article  MathSciNet  Google Scholar 

  7. N. S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse Problems 22 (2006), 431–445.

    Article  MathSciNet  Google Scholar 

  8. C. Guillarmou, Lens rigidity for manifolds with hyperbolic trapped set, J. Amer.Math. Soc. 30 (2017), 561–599.

    Article  MathSciNet  Google Scholar 

  9. G. Herglotz, Über die Elastizitaet der Erde bei Beruecksichtigung ihrer variablen Dichte, Zeitschr. für Math. Phys. 52 (1905), 275–299.

    MATH  Google Scholar 

  10. V. P. Krishnan, A support theorem for the geodesic ray transform on functions, J. Fourier Anal. Appl. 15 (2009), 515–520.

    Article  MathSciNet  Google Scholar 

  11. V. P. Krishnan and P. Stefanov, A support theorem for the geodesic ray transform of symmetric tensor fields, Inverse Probl. Imaging 3 (2009), 453–464.

    Article  MathSciNet  Google Scholar 

  12. R. B. Melrose, Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidian Spaces, Marcel Dekker, New York, 1994.

    MATH  Google Scholar 

  13. R. G. Muhometov, On a problem of reconstructing Riemannian metrics, Sibirsk. Mat. Zh. 22 (1981), 119–135, 237.

    MathSciNet  Google Scholar 

  14. R. G. Mukhometov, On the problem of integral geometry, Math. problems of geophysics, Akad. Nauk SSSR, Sibirsk., Otdel., Vychisl., Tsentr, Novosibirsk 6 (1975), 212–242.

    Google Scholar 

  15. G. P. Paternain, M. Salo, and G. Uhlmann, Tensor tomography on surfaces, Invent. Math. 193 (2013), 229–247.

    Article  MathSciNet  Google Scholar 

  16. L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh. 29 (1988), 114–130, 221.

    MathSciNet  MATH  Google Scholar 

  17. L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2) 161 (2005), 1093–1110.

    Article  MathSciNet  Google Scholar 

  18. A. Ranjan and H. Shah, Convexity of spheres in a manifold without conjugate points, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 595–599.

    Article  MathSciNet  Google Scholar 

  19. V. Sharafutdinov, Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal. 17 (2007), 147–187.

    Article  MathSciNet  Google Scholar 

  20. V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Utrecht, The Netherlands, 1994.

    Book  Google Scholar 

  21. V. A. Sharafutdinov, A problem in integral geometry in a nonconvex domain, Sibirsk. Mat. Zh. 43 (2012), 1430–1442.

    MathSciNet  MATH  Google Scholar 

  22. V. A. Sharafutdinov, Ray transform on Riemannian manifolds, New Analytic and Geometric Methods in Inverse Problems, Springer-Verlag, Berlin-Heidelberg, 2004, pp. 187–259.

    Chapter  Google Scholar 

  23. P. Stefanov, A sharp stability estimate in tensor tomography, Journal of Physics: Conference Series 124 (2008), 012007.

    Google Scholar 

  24. P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J. 123 (2004), 445–467.

    Article  MathSciNet  Google Scholar 

  25. P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), 975–1003.

    Article  MathSciNet  Google Scholar 

  26. P. Stefanov and G. Uhlmann, Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, Amer. J.Math. 130 (2008), 239–268.

    Article  MathSciNet  Google Scholar 

  27. P. Stefanov and G. Uhlmann, Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differential Geom. 82 (2009), 383–409.

    Article  MathSciNet  Google Scholar 

  28. P. Stefanov, G. Uhlmann, and A. Vasy, Boundary rigidity with partial data, J. Amer.Math. Soc. 29 (2016), 299–332.

    Article  MathSciNet  Google Scholar 

  29. P. Stefanov, G. Uhlmann, and A. Vasy, Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge, arXiv:1702.03638 [math.DG].

  30. G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016), 83–120.

    Article  MathSciNet  Google Scholar 

  31. E. Wiechert and K. Zoeppritz, Über Erdbebenwellen, Nachr. Koenigl. Geselschaft Wiss. Göttingen 4 (1907), 415–549.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Vasy.

Additional information

Partially supported by the National Science Foundation under grant DMS-1301646

Partially supported by the National Science Foundation under grants CMG-1025259 and DMS-1265958

Partially supported by the National Science Foundation under grants CMG-1025259 and DMS-1361432

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanov, P., Uhlmann, G. & Vasy, A. Inverting the local geodesic X-ray transform on tensors. JAMA 136, 151–208 (2018). https://doi.org/10.1007/s11854-018-0058-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0058-3

Navigation