Skip to main content
Log in

Riemann Sums and Möbius

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let S be the set of square-free natural numbers. A Hilbert-Schmidt operator, A, associated to the Möbius function has the property that it maps from \({ \cup _{0 < r < \infty }}{l^r}(s)\) to \({ \cap _{0 < r < \infty }}{l^r}(s)\), injectively. If 0 < r< 2 and ξlr (S), the series \({f_\zeta } = \sum\nolimits_{n \in s} {A\zeta (x)cos2\pi nx} \) converges uniformly to an element of fξR0, i.e., a periodic, even, continuous function with equally spaced Riemann sums, \(\sum\nolimits_{j = 0}^{N - 1} {{f_\zeta }} (j/N) = 0,N = 1,2....\) If \({A_{\zeta \lambda }} = \lambda {\zeta _\lambda },{\zeta _\lambda }(1) = 1\), then ξλ is multiplicative. If \({f_{{\zeta _\lambda }}} \in {\Lambda _a}\), the space of α-Lipschitz continous functions, for some α > 0, and if χ is any Dirichlet character, then L(s, χ) ≠ 0, Res > 1 − α. Conjecturally, the Generalized Riemann Hypothesis (GRH) is equivalent to fξ ∈ Λα, α < 1/2, ξlr (S), 0 < r < 2. Using a 1991 estimate by R. C. Baker and G. Harman, one finds GRH implies fξ ∈ Λα, α < 1/4, ξlr (S), 0 < r < 2. The question of whether R0 ∩ Λα ≠ {0} for some positive α > 0 is open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Besicovitch, Problem on continuity, J. London Math. Soc. 36 (1961), 388–392.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. T. Bateman and S. Chowla, Some special trigonometrical series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372–374.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. C. Baker and G. Harman, Exponential sums formed with the Möbius function, J. London Math. Soc. (2) 43 (1991), 193–198.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Davenport, On some infinite series involving arithmetical functions, Quart. J. Math. 8 (1937), 8–13.

    Article  MATH  Google Scholar 

  5. H. Davenport, On some infinite series involving arithmetical functions (II), Quart. J. Math. 8 (1937), 313–320.

    Article  MATH  Google Scholar 

  6. D. Hajela and B. Smith, On the maximum of an exponential sum of the Möbius function, Number Theory, Springer, Berlin, 1987, pp. 145–164.

    MATH  Google Scholar 

  7. H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., Providence, RI, 2004.

    Book  MATH  Google Scholar 

  8. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.

    MATH  Google Scholar 

  9. J. Priwaloff, Sur les fonctions conjuguées, Bull. Soc. Math. France 44 (1916), 100–103.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Tao, A remark on partial sums involving the Möbius function Bull, Aust. Math. Soc. 81 (2010), 343–349.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. C. Titchmarsh, The Theory of Functions, reprint of the second (1939) edition, Oxford University Press, Oxford, 1958.

    Google Scholar 

  12. W. A. Veech, Periodic points and invariant pseudomeasures for toral endomorphisms, Ergodic Theory Dyn. Syst. 6 (1986), 449–473.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Zygmund, Trigonometric Series, 2nd ed., Vols. I, II, Cambridge University Press, New York, 1959.

    MATH  Google Scholar 

Download references

Authors

Additional information

William A. Veech passed away on August 30, 2016, before the final revisions were made to his paper. The Editorial Board of Journal d’Analyse Mathématique thanks Giovanni Forni and Jon Fickenscher for helping to prepare the paper for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veech, W.A. Riemann Sums and Möbius. JAMA 135, 413–436 (2018). https://doi.org/10.1007/s11854-018-0046-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0046-7

Navigation