Skip to main content
Log in

Multi-invariant measures and subsets on nilmanifolds

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Given a Zr-action α on a nilmanifold X by automorphisms and an ergodic α-invariant probability measure μ, we show that μ is the uniform measure on X unless, modulo finite index modification, one of the following obstructions occurs for an algebraic factor action

  1. (1)

    the factor measure has zero entropy under every element of the action

  2. (2)

    the factor action is virtually cyclic.

We also deduce a rigidity property for invariant closed subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Abraomov and V. A. Rohlin, Rohlin, Entropy of a skew product of mappings with invariant measure (Russian) Vestnik Leningrad. Univ. 17 (1962), 5–13.

    Google Scholar 

  2. Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2) 174 (2011), 1111–1162.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Benoist and J. F. Quint, Stationary measures and invariant subsets of homogeneous spaces (II), J. Amer.Math. Soc. 26 (2013), 659–734.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280 (1983), 509–532.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc. 286 (1984), 505–535.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part I, Cambridge Univ. Press, Cambridge, 1990.

    MATH  Google Scholar 

  7. M. Einsiedler, Ratner’s theorem on SL(2,R)-invariant measures, Jahresber. Deutsch. Math.-Verein. 108 (2006), 143–164.

    MathSciNet  MATH  Google Scholar 

  8. M. Einsiedler and A. Katok, Invariant measures on G/Γ for split simple Lie groups G, Comm. Pure Appl. Math. 56 (2003), 1184–1221.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Einsiedler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006), 513–560.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Einsiedler and E. Lindenstrauss, Rigidity properties of Zd -actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 99–110 (electonic).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, Homogeneous Flows, Moduli Spaces and Arithmetic, Amer. Math. Soc., Providence, RI, 2010, pp. 155–241.

    Google Scholar 

  12. M. Einsiedler, E. Lindenstrauss, and Z. Wang, Rigidity properties of abelian actions on tori and solenoids, in preparation.

  13. M. Einseidler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer-Verlag, London, 2011.

    Google Scholar 

  14. J. Feldman, A generalization of a result of R. Lyons about measures on [0, 1), Israel J. Math. 81 (1993), 281–287.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Fisher, B. Kalinin, and R. Spatzier, Totally nonsymplectic Anosov actions on tori and nilmanifolds, Geom. Topol. 15 (2011), 191–216.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Fisher, B. Kalinin, and R. Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, J. Amer.Math. Soc. 26 (2013), 167–198.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49.

    MATH  Google Scholar 

  18. L. W. Green, Spectra of nilflows, Bull. Amer. Math. Soc. 67 (1961), 414–415.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hochman, Geometric rigidity of ×m invariant measures, J. Eur. Math. Soc. (JEMS) 14 (2012), 1539–1563.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures, Ann. of Math. (2) 175 (2012), 1001–1059.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Host, Nombres normaux, entropie, translations, Israel J. Math. 91 (1975), 419–428.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  23. A. S. A. Johnson, Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers, Israel J. Math. 77 (1992), 211–240.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Johnson and D. J. Rudolph, Convergence under ×q of ×p invariant measures on the circle, Adv. Math. 115 (1995), 117–140.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups, Smooth Ergodic Theory and its Applications, Amer. Math. Soc. Providence RI, 2001, pp. 593–637.

    Chapter  Google Scholar 

  26. B. Kalinin and R. Spatzier, Rigidity of the measurable structure for algebraic actions of higher-rank abelian groups, Ergodic Theory Dynam. Systems 25 (2005), 175–200.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Katok and V. Niţică, Rigidity in Higher Rank Abelian Group Actions. Volume I: Introduction and Cocycle Problem, Cambridge Univ. Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  28. A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), 751–778.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory Dynam. Systems 2 (1982), 203–219.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I., II., Ann. of Math. (2) 122 (1985), 509–539, 540–574.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann of Math. (2) 163 (2006), 165–219.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Lindenstrauss and Z. Wang, Topological self-joining of Cartan actions by toral automorphisms, Duke Math. J. 161 (2012), 1305–1350.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Lyons, On measures simultaneously 2- and 3-invariant, Israel J. Math. 61 (1988), 219–224.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Maucourant, A nonhomogeneous orbit closure of a diagonal subgroup, Ann. of Math. (2) 171 (2010), 557–570.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37–40.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Parry, Squaring and cubing the circle—Rudolph’s theorem, Ergodic Theory of Zd actions, Cambridge Univ. Press, Cambridge, 1996, pp. 177–183.

    Google Scholar 

  38. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972.

    Book  MATH  Google Scholar 

  39. M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), 545–607.

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Rodriguez Hertz and Z. Wang, Global rigidity of higher rank Anosov algebraic actions, Invent. Math. 198 (2014), 65–209.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer.Math. Soc. 101 (1961), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. J. Rudolph, ×2 and ×3 invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), 395–406.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser Verlag, Basel, 1995.

    Book  MATH  Google Scholar 

  44. A. N. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, J. Math. Sci. 7 (1999), 2567–2582.

    MathSciNet  Google Scholar 

  45. T. Ward and Q. Zhang, The Abramov-Rokhlin entropy addition formula for amenable group actions, Monatsh. Math. 114 (1992), 317–329.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiren Wang.

Additional information

The author was supported by NSF grant DMS-1201453 and an AMS-Simons travel grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. Multi-invariant measures and subsets on nilmanifolds. JAMA 135, 123–183 (2018). https://doi.org/10.1007/s11854-018-0041-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0041-z

Navigation