Skip to main content
Log in

On a singular minimizing problem

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

For each q ∈ (0, 1), let

$${\lambda _q}(\Omega ): = inf\{ ||{\nabla _v}||_{{L^P}(\Omega )}^P:v \in W_0^{1,P}(\Omega )and\int_\Omega {|v{|^q}dx = 1\} } $$

where p > 1 and Ω is a bounded and smooth domain of RN, N ≥ 2. We first show that

$$0 < \mu (\Omega ): = \mathop {\lim }\limits_{q \to {0^ + }} {\lambda _q}(\Omega )|\Omega {|^{p/q}} < \infty $$

where |Ω| = ∫Ω dx. Then we prove that

$$\mu (\Omega ) = min\left\{ {||{\nabla _v}||_{{l^p}(\Omega )}^p:v \in W_0^{1,p}(\Omega )and\mathop {lim}\limits_{q \to {0^ + }} {{(\frac{1}{{|\Omega |}}\int_\Omega {|v{|^q}dx} )}^{1/q}} = 1} \right\}$$

and that μ(Ω) is attained by a function uW01,p (Ω) which is positive in Ω, belongs to \({C^{0,a}}(\bar \Omega )\) for some α ∈ (0, 1), and satisfies

$$ - div\left( {|{\nabla _u}{|^{p - 2}}{\nabla _u}} \right) = \mu (\Omega )|\Omega {|^{ - 1}}{u^{ - 1}}in\Omega ,and\int_\Omega {\log udx = 0.} $$

We also show that μ(Ω)−1 is the best constant C in the log-Sobolev type inequality

$$\exp \left( {\frac{1}{{|\Omega |}}\int_\Omega {\log |v{|^p}dx} } \right) \leqslant C||{\nabla _V}||_{{L^P}(\Omega )}^P,v \in W_0^1(\Omega )$$

and that this inequality becomes an equality if and only if v is a scalar multiple of u and C = μ(Ω)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Anello, F. Faraci, and A. Iannizzotto, On a problem of Huang concerning best constants in Sobolev embeddings, Ann. Mat. Pura Appl. 194 (2015), 767–779.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bandle, Rayleigh-Faber-Krahn inequalities and quasilinear elliptic boundary value problems, Nonlinear Analysis and Applications, to V. Lakshmikantham on his 80th Birthday. Vol. 1, Kluwer Acad. Publ., Dordrecht, 2003, pp. 227–240.

    MATH  Google Scholar 

  3. Y. Chu and W. Gao, Existence of solutions to a class of quasilinear elliptic problems with nonlinear singular terms, Boundary Value Problems 2013:229 (2013).

    Google Scholar 

  4. M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with singular nonlinearity, Comm. Partial Differential Equations 2 (1977) 193–222.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Ercole, Absolute continuity of the best Sobolev constant, J. Math. Anal. Appl. 404 (2013), 420–428.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Ercole, On the resonant Lane-Emden problem for the p-Laplacian, Commun. Contemp. Math. 16 (2014), 1350033.

    MathSciNet  MATH  Google Scholar 

  7. G. Ercole and G. A. Pereira, Asymptotics for the best Sobolev constants and their extremal functions, Math. Nachr. 289 (2016), 1433–1449.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, New York, 2011.

    Book  MATH  Google Scholar 

  9. J. Giacomoni, I. Schindler, and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007), 117–158.

    MATH  Google Scholar 

  10. J. Giacomoni, I. Schindler, and P. Takáč, Singular quasilinear elliptic equations and Hölder regularity, C. R. Acad. Sci. Paris, Ser. I 350 (2012), 383–388.

    Article  MATH  Google Scholar 

  11. B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  12. O. Ladyzhenskaya and N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.

    MATH  Google Scholar 

  13. A. C. Lazer and P. J. Mckenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Mohammed, Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl. 352 (2009), 234–245.

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Ren and J. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differential Equations 117 (1995), 28–55.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math. Z. 147 (1976), 53–63.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grey Ercole.

Additional information

The first author acknowledges support by Fundac¸ ˜ao de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig)/Brazil (CEX-PPM-00165) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/Brazil (483970/2013-1 and 306590/2014-0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercole, G., de Assis Pereira, G. On a singular minimizing problem. JAMA 135, 575–598 (2018). https://doi.org/10.1007/s11854-018-0040-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0040-0

Navigation