Skip to main content
Log in

A continuous model for systems of complexity 2 on simple abelian groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

It is known that if p is a sufficiently large prime, then, for every function f: Zp → [0, 1], there exists a continuous function f′: T → [0, 1] on the circle such that the averages of f and f′ across any prescribed system of linear forms of complexity 1 differ by at most ∈. This result follows from work of Sisask, building on Fourier-analytic arguments of Croot that answered a question of Green. We generalize this result to systems of complexity at most 2, replacing T with the torus T2 equipped with a specific filtration. To this end, we use a notion of modelling for filtered nilmanifolds, that we define in terms of equidistributed maps and combine this notion with tools of quadratic Fourier analysis. Our results yield expressions on the torus for limits of combinatorial quantities involving systems of complexity 2 on Zp. For instance, let m4(α, Zp) denote the minimum, over all sets A ⊆ Zp of cardinality at least αp, of the density of 4-term arithmetic progressions inside A. We show that limp→∞ m4(α, Zp) is equal to the infimum, over all continuous functions f: T2 →[0, 1] with \({\smallint _{{T^2}}}f \geqslant a\), of the integral

$$\int_{{T^5}} {f\left( {\begin{array}{*{20}{c}} {{x_1}} \\ {{y_1}} \end{array}} \right)} f\left( {\begin{array}{*{20}{c}} {{x_1} + {x_2}} \\ {{y_1} + {y_2}} \end{array}} \right)f\left( {\begin{array}{*{20}{c}} {{x_1} + 2{x_2}} \\ {{y_1} + 2{y_2} + {y_3}} \end{array}} \right).f\left( {\begin{array}{*{20}{c}} {{x_1} + 3{x_2}} \\ {{y_1} + 3{y_2} = 3{y_3}} \end{array}} \right)d{\mu _{{T^5}}}({x_1},{x_2},{y_1},{y_2},{y_3})$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Candela and O. Sisask, On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime, Acta Math. Hungar. 132 (2011), 223–243.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Candela and O. Sisask, Convergence results for systems of linear forms on cyclic groups, and periodic nilsequences, SIAM J. Discrete Math. 28 (2014), 786–810.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Croot, The minimal number of three-term arithmetic progressions modulo a prime converges to a limit, Canad. Math. Bull. 51 (2008), 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Croot and V. Lev, Open problems in additive combinatorics, Additive Combinatorics, American Mathematical Society, Providence RI, 2007, pp. 207–233.

    Book  MATH  Google Scholar 

  5. L. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  6. A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Springer, 2009.

    MATH  Google Scholar 

  7. T. Eisner and T. Tao, Large values of the Gowers-Host-Kra seminorms, J. Anal. Math. 117 (2012), 133–186.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Foundations of Lie Theory and Lie transformation groups, Springer 1997.

    MATH  Google Scholar 

  9. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom./Funct. Anal. 11 (2001), 465–588.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. T. Gowers and J. Wolf, Linear functions and quadratic uniformity for functions on ZN, J. Anal. Math. 115 (2011), 121–186.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. T. Gowers and J. Wolf, The true complexity of a system of linear equations, Proc. Lond. Math. Soc. (3) 100 (2010), 155–176.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Green and T. Tao, Quadratic uniformity of the Möbius function, Ann. Inst. Fourier (Grenoble) 58 (2008), 1863–1935.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), 465–540.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Green and T. Tao, An arithmetic regularity lemma, an associated counting lemma, and applications, An Irregular Mind, Szemerédi is 70, Janos Bolyai Math. Soc., Budapest, 2010, pp. 261–334.

    MATH  Google Scholar 

  15. B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers Us+1[N]-norm, Ann. of Math. 176 (2012), 1231–1372.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Normale Sup. (3) 71 (1954), 101–190.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Leibman, Polynomial sequences in groups, Journal of Algebra 201 (1998), 189–206.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Leibman, Orbit of the diagonal in the power of a nilmanifold, Trans. Amer. Math. Soc. 362 (2010), 1619–1658.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Comb. Theory, Ser. B 96 (2006), 933–957.

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Sisask, Combinatorial properties of large subsets of abelian groups, Ph. D. Thesis, University of Bristol, 2009.

    Google Scholar 

  21. B. Szegedy, Limits of functions on groups, Trans. Amer. Math. Soc., to appear.

  22. B. Szegedy, On higher order Fourier analysis, preprint. arXiv:1203. 2260.

  23. T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Candela.

Additional information

This work was supported by the ERC Consolidator Grant No. 617747.

For a finite set X and a function f : X → C, we denote by Ex∈X f (x) the average \(\frac{1}{{\left| {\text{x}} \right|}}\sum {_{x \in X}} f\left( x \right)\) .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candela, P., Szegedy, B. A continuous model for systems of complexity 2 on simple abelian groups. JAMA 135, 437–471 (2018). https://doi.org/10.1007/s11854-018-0037-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0037-8

Navigation