Skip to main content
Log in

Perturbation of chains of de Branges spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We investigate the structure of the set of de Branges spaces of entire functions which are contained in a space L2(μ). Thereby, we follow a perturbation approach. The main result is a growth dependent stability theorem. Namely, assume that measures μ1 and μ2 are close to each other in a sense quantified relative to a proximate order. Consider the sections of corresponding chains of de Branges spaces C1 and C2 which consist of those spaces whose elements have finite (possibly zero) type with respect to the given proximate order. Then either these sections coincide or one is smaller than the other but its complement consists of only a (finite or infinite) sequence of spaces.

Among other situations, we apply—and refine—this general theorem in two important particular situations

  1. (1)

    the measures μ1 and μ2 differ in essence only on a compact set; then stability of whole chains rather than sections can be shown

  2. (2)

    the linear space of all polynomials is dense in L2(μ2); then conditions for density of polynomials in the space L2(μ2) are obtained.

In the proof of the main result, we employ a method used by P. Yuditskii in the context of density of polynomials. Another vital tool is the notion of the index of a chain, which is a generalisation of the index of determinacy of a measure having all power moments. We undertake a systematic study of this index, which is also of interest on its own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Baranov, Completeness and Riesz bases of reproducing kernels in model subspaces, Int. Math. Res. Not. (2006), Art. ID 81530, 34.

    Google Scholar 

  2. A. D. Baranov, A. Borichev, and V. Havin, Majorants of meromorphic functions with fixed poles, Indiana Univ. Math. J. 56 (2007), 1595–1628.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Berg and A. J. Duran, The index of determinacy for measures and the l2-norm of orthonormal polynomials, Trans. Amer. Math. Soc. 347 (1995), 2795–2811.

    MathSciNet  MATH  Google Scholar 

  4. C. Berg and H. L. Pedersen, Logarithmic order and type of indeterminate moment problems, Difference Equations, Special Functions and Orthogonal Polynomials (with an appendix by Walter Hayman), World Sci. Publ., Hackensack, NJ, 2007, pp. 51–79.

    Chapter  Google Scholar 

  5. A. Borichev and M. Sodin, Weighted exponential approximation and non-classical orthogonal spectral measures, Adv. Math. 226 (2011), 2503–2545.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. de Branges, Some Hilbert Spaces of Entire Functions, Proc. Amer. Math. Soc. 10 (1959), 840–846.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. de Branges, Some mean squares of entire functions, Proc. Amer. Math. Soc. 10 (1959), 833–839.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118–152.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall Inc., Englewood Cliffs, NJ, 1968.

    MATH  Google Scholar 

  10. H. Dym. An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type, Advances in Math. 5 (1970), 395–471.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Dym and N. Kravitsky, On recovering the mass distribution of a string from its spectral function, Topics in Functional Analysis (Essays Dedicated to M. G. Kreĭn on the Occasion of his 70th Birthday). Vol. 3, Academic Press, New York-London, 1978, pp. 45–90.

    Google Scholar 

  12. H. Dym and N. Kravitsky, On the inverse spectral problem for the string equation, Integral Equations Operator Theory 1 (1978), 270–277.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Dym and H. P. McKean, Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes, Illinois J. Math. 14 (1970), 299–343.

    MathSciNet  MATH  Google Scholar 

  14. G. Freud, Orthogonale Polynome, Birkhäuser Verlag, Basel-Stuttgart, 1969.

    Book  MATH  Google Scholar 

  15. I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 309–360.

    MathSciNet  MATH  Google Scholar 

  16. A. A. Gol'dberg, The integral over a semi-additive measure and its application to the theory of entire functions. II, Mat. Sb. (N.S.) 61 (1962), 334–349.

    MathSciNet  MATH  Google Scholar 

  17. V. Havin and J. Mashreghi, Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function, Canad. J. Math. 55 (2003), 1231–1263.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Havin and J. Mashreghi, Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function, Canad. J. Math. 55 (2003), 1264–1301.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Kaltenbäck and H. Woracek, de Branges spaces of exponential type: general theory of growth, Acta Sci. Math. (Szeged) 71 (2005), 231–284.

    MathSciNet  MATH  Google Scholar 

  20. M. Kaltenbäck and H. Woracek, Hermite-Biehler functions with zeros close to the imaginary axis, Proc. Amer. Math. Soc. 133 (2005), 245–255 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Langer and H. Woracek, Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of nonpositive type, Oper. Matrices 7 (2013), 477–555.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Langer and H. Woracek, The exponential type of the fundamental solution of an indefinite Hamiltonian system, Complex Anal. Oper. Theory 7 (2013), 285–312.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  24. B. Ja. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, RI, 1980.

    Google Scholar 

  25. J. Ortega-Cerdà and K. Seip, Fourier frames, Ann. of Math. (2) 155 (2002), 789–806.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. D. Pitt, On problems of trigonometrical approximation from the theory of stationary Gaussian processes, J. Multivariate Anal. 2 (1972), 145–161.

    Article  MathSciNet  Google Scholar 

  27. A. Poltoratski, A problem on completeness of exponentials, Ann. of Math. (2) 178 (2013), 983–1016.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Remling. Schrödinger operators and de Branges spaces, J. Funct. Anal. 196 (2002), 323–394.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. A. Rubel, Entire and Meromorphic Functions, Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  30. H. Winkler, Small perturbations of canonical systems, Integral Equations Operator Theory 38 (2000), 222–250.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Winkler, The inverse spectral problem for canonical systems, Integral Equations Operator Theory 22 (1995), 360–374.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Woracek, Reproducing kernel almost Pontryagin spaces 40 pp., ASC Report 14. https://doi.org/www.asc.tuwien.ac.at/preprint/2014/asc14x2014.pdf. Vienna University of Technology, 2014.

    MATH  Google Scholar 

  33. P. Yuditskii, Analytic perturbation preserves determinacy of infinite index, Math. Scand. 86 (2000), 288–292.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Woracek.

Additional information

This work was supported by a joint project of the Austrian Science Fund (FWF, I 1536–N25) and the Russian Foundation for Basic Research (RFBR, 13-01-91002-ANF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woracek, H. Perturbation of chains of de Branges spaces. JAMA 135, 271–312 (2018). https://doi.org/10.1007/s11854-018-0036-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0036-9

Navigation