Skip to main content
Log in

On the moving plane method for nonlocal problems in bounded domains

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider a nonlocal problem involving the fractional Laplacian and the Hardy potential in bounded smooth domains. Exploiting the moving plane method and some weak and strong comparison principles, we deduce symmetry and monotonicity properties of positive solutions under zero Dirichlet boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academics Press, New York, 1975.

    MATH  Google Scholar 

  2. G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann. 310 (1998), 527–560.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura Appl. 58 (1962), 303–354.

    Article  MathSciNet  Google Scholar 

  4. B. Barrios, E. Colorado, R. Servadei, and F. Soria, A critical fractional equation with concaveconvex nonlinearities, Ann. Henri Poincaré 3 (2015), 875–900.

    Article  MATH  Google Scholar 

  5. B. Barrios, A. Figalli, and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) 13 (2014), 609–639.

    MathSciNet  MATH  Google Scholar 

  6. B. Barrios, M. Medina, and I. Peral, Some remarks on the solvability of non local elliptic problems with the Hardy potential, Commun. Contemp. Math. 16 (2014), no. 4.

    Google Scholar 

  7. B. Barrios, I. Peral, F. Soria, and E. Valdinoci, A Widder’s type theorem for the heat equation with nonlocal diffusion, Arch. Rational Mech. Anal. 213 (2014), 629–650.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Comm. Partial Differential Equations 30 (2005), 1249–1259.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897–1905.

    MathSciNet  MATH  Google Scholar 

  10. H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bolletin Soc. Brasil. de Mat Nova Ser, 22 (1991), 1–37

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), 1859–1894.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek, Potential Analysis of Stable Processes and its Extensions, Springer-Verlag, Berlin, 2009.

    Book  Google Scholar 

  13. H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions, Boll. Unione Mat. Ital. 1-B (1998), 223–262.

    MathSciNet  MATH  Google Scholar 

  14. X. Cabré and J. Sola-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), 1678–1732.

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Cabré and Y. Sire, Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions, Ann. Inst. H. Poincare (C) Non Linear Analysis, online 2013.

    Google Scholar 

  16. L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067–1075.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math. 680 (2013), 191–233.

    MathSciNet  MATH  Google Scholar 

  18. L. Caffarelli, J. M. Roquejoffre, and Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), 1151–1179.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), 597–638.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Rational Mech. Anal. 200 (2011), 59–88.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Caffarelli and L. Silvestre, The Evans-Krylov theorem for non local fully non linear equations, Ann. of Math. (2) 174 (2011), 1163–1187.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math. (2) 171 (2010), 1903–1930.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Chen, C. Li, and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst. 12 (2005), 347–354.

    MathSciNet  MATH  Google Scholar 

  24. W. Chen, C. Li, and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Dipierro, L. Montoro, I. Peral, and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations 55 (2016), Art. 99.

  27. S. Dipierro, G. Palatucci, and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania) 68 (2013), 201–216.

    MathSciNet  MATH  Google Scholar 

  28. R. L. Frank, E. H. Lieb, and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer.Math. Soc. 21 (2008), 925–950.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math. 16 (2014), no. 1.

    Google Scholar 

  30. A. Figalli, S. Dipierro, and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Commun. Partial Differential Equations 39 (2014), 2351–2387.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Herbst, Spectral theory of the operator (p2 +m2)1/2-Ze2/r, Commun. Math. Phys. 53 (1977), 285–294.

    Article  Google Scholar 

  33. R. Husseini and M. Kassmann, Jump processes, L-harmonic functions, continuity estimates and the Feller property, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 1099–1115.

    Article  MATH  Google Scholar 

  34. S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst. 34 (2014), 2581–2615.

    MathSciNet  MATH  Google Scholar 

  35. S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (4) 195 (2016), 273–291.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Ito, Lectures on Stochastic Processes, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  37. N. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972.

    Book  MATH  Google Scholar 

  38. T. Leonori, I. Peral, A. Primo, and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst. 35 (2015), 6031–6068.

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl. 342 (2008), 943–949.

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), 275–302.

    Article  MathSciNet  MATH  Google Scholar 

  42. O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal. 19 (2009), 420–432l.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Serra, Cs+a regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differential Equations 54 (2015), 3571–3601.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304–318.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Servadei and E. Valdinocci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887–898.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.

    MathSciNet  MATH  Google Scholar 

  47. A. Signorini, Questioni di elasticitá non linearizzata e semilinearizzata, Rendiconti di Matematica e delle sue applicazioni 18 (1959), 95–139.

    MATH  Google Scholar 

  48. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112.

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009), 1842–1864.

    Article  MathSciNet  MATH  Google Scholar 

  50. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  51. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  52. J. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal. 145 (1997), 136–150.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33–44.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berardino Sciunzi.

Additional information

Partially supported by project MTM2010-18128, MICI NN.

Partially supported by PRIN-2011: Variational and Topological Methods in the Study of Nonlinear Phenomena.

Partially supported by ERC-2011-grant: Elliptic PDE’ s and symmetry of interfaces and layers for odd nonlinearities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios, B., Montoro, L. & Sciunzi, B. On the moving plane method for nonlocal problems in bounded domains. JAMA 135, 37–57 (2018). https://doi.org/10.1007/s11854-018-0031-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0031-1

Navigation