Skip to main content
Log in

Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the dynamics of fixed point free mappings on the interior of a normal, closed cone in a Banach space that are nonexpansive with respect to Hilbert’s metric or Thompson’s metric. We establish several Denjoy-Wolff type theorems which confirm conjectures by Karlsson and Nussbaum for an important class of nonexpansive mappings. We also extend and put into a broader perspective results by Gaubert and Vigeral concerning the linear escape rate of such nonexpansive mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Cosenza, 1989.

    MATH  Google Scholar 

  2. M. Akian, S. Gaubert, B. Lemmens, and R. D. Nussbaum, Iteration of order preserving subhomogeneous maps on a cone, Math. Proc. Cambridge Philos. Soc. 140 (2006), 157–176.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Akian, S. Gaubert, and R. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, submitted. arXiv:1112. 5968, 2011.

    Google Scholar 

  4. D. S. Alexander, F. Iavernaro, and A. Rosa, Early Days in Complex Dynamics. A History of Complex Dynamics in One Variable During 1906–1942, Amer. Math. Soc., Providence, RI; London Math. Soc., London, 2012.

    MATH  Google Scholar 

  5. C. D. Aliprantis and R. Tourky, Cones and Duality, Amer. Math. Soc., Providence RI, 2007.

    Book  MATH  Google Scholar 

  6. A. F. Beardon, Iteration of contractions and analytic maps, J. Lond. Math. Soc. (2) 41 (1990), 41–150.

    MathSciNet  MATH  Google Scholar 

  7. A. F. Beardon, The dynamics of contractions, Ergodic Theory Dynam. Systems 17 (1997), 1257–1266.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Budzyńska, T. Kuczumow, and S. Reich, A Denjoy-Wolff theorem for compact holomorphic mappings in reflexive Banach spaces J. Math. Anal. Appl. 396 (2012), 504–512.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Budzyńska, T. Kuczumow, and S. Reich, Theorems of Denjoy-Wolff type, Ann. Mat. Pura Appl. (4) 192 (2013), 621–648.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Budzyńska, T. Kuczumow, and S. Reich, A Denjoy-Wolff theorem for compact holomorphic mappings in complex Banach spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 747–756.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. D. Burbanks, R. D. Nussbaum, and C. T. Sparrow, Extension of order-preserving maps on a cone, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 35–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Całka, On a condition under which isometries have bounded orbits, Colloq. Math. 48 (1984), 219–227.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Chodrow, W. Franks, and B. Lins, Upper and lower bounds for the iterates of order-preserving homogeneous maps on cones, Lin. Alg. Appl. 439 (2013), 999–1005.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Denjoy, Sur l’itération des fonctions analytiques, C. R. Acad. Sci. Paris, Série 1, 182 (1926), 255–257.

    MATH  Google Scholar 

  15. M. Edelstein, On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), 439–447.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Faraut and A. Korányi. Analysis on Symmetric Cones, Oxford University Press, USA, 1995.

    MATH  Google Scholar 

  17. P. Funk, Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann. 101 (1929), 226–237.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Gaubert and G. Vigeral, A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces, Math. Proc. Cambridge Philos. Soc. 152 (2012), 341–363.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Goebel and S. Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan. Acad. Ser. A Math. Sci. 58 (1982), 349–352.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984.

    MATH  Google Scholar 

  21. M. Gromov, Hyperbolic manifolds, groups and actions, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), Princeton Univ. Press, Princeton, NJ, 1981, pp. 183–213.

    Google Scholar 

  22. D. Hilbert, Über die gerade Linie als kürzeste Verbindung zweier Punkte, Math. Ann. 46 (1895), 91–96.

    Article  MATH  Google Scholar 

  23. C. Kai, A characterization of symmetric cones by an order-reversing property of the pseudoinverse maps, J. Math. Soc. Japan 60 (2008), 1107–1134.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Kapeluszny, T. Kuczumow, and S. Reich, The Denjoy-Wolff theorem for condensing holomorphic mappings, J. Funct. Anal. 167 (1999), 79–93.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Karlsson, Nonexpanding maps and Busemann functions, Ergodic Theory Dynam. Systems 21 (2001), 1447–1457.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Karlsson, Dynamics of Hilbert nonexpansive maps, in Handbook of Hilbert Geometry, European Mathematical Society Publishing House, Zürich, 2014, pp. 263–274

    Google Scholar 

  27. A. Karlsson, V. Metz, and G. A. Noskov, Horoballs in simplices and Minkowski spaces, Int. J. Math. Math. Sci. 2006, Art. ID 23656.

    Google Scholar 

  28. A. Karlsson and G. A. Noskov, The Hilbert metric and Gromov hyperbolicity Enseign. Math. (2) 48 (2002), 73–89.

    MathSciNet  MATH  Google Scholar 

  29. M. A. Krasnosel’skij, Je. A. Lifshits, and A. V. Sobolev, Positive Linear Systems. The Method of Positive Operators, Heldermann Verlag, Berlin, 1989.

    Google Scholar 

  30. B. Lemmens, Nonexpansive mappings on Hilbert’s metric spaces, Topol. Methods Nonlinear Anal. 38 (2011), 45–58.

    MathSciNet  MATH  Google Scholar 

  31. B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge Univ. Press, Cambridge, 2012.

    Book  MATH  Google Scholar 

  32. B. Lemmens and R. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc. 141, (2013), 2741–2754.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Lins, Asymptotic behavior and Denjoy-Wolff theorems for Hilbert metric nonexpansive maps, Ph.D. thesis, Rutgers University, New Brunswick, New Jersey, USA, 2007.

    MATH  Google Scholar 

  34. B. Lins, A Denjoy-Wolff theorem for Hilbert metric nonexpansive maps on a polyhedral domain, Math. Proc. Cambridge Philos. Soc. 143 (2007), 157–164.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Lins and R. D. Nussbaum, Denjoy-Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators, J. Funct. Anal. 254 (2008), 2365–2386.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl. 7 (2010), 103–143.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Mallet-Paret and R. D. Nussbaum, Inequivalent measures of noncompactness and the radius of the essential spectrum, Proc. Amer. Math. Soc. 139 (2011), 917–930.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Metz, Hilbert’s projective metric on cones of Dirichlet forms, J. Funct. Anal. 127 (1995), 438–455.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. R. Munkres, Topology, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2000.

    MATH  Google Scholar 

  40. R. D. Nussbaum, Hilbert’s Projective Metric and Iterated Nonlinear Maps, Mem. Amer. Math. Soc. 75 (1988), no. 391.

    Google Scholar 

  41. R. D. Nussbaum, Fixed point theorems and Denjoy-Wolff theorems for Hilbert’s projective metric in infinite dimensions, Topol. Methods Nonlinear Anal. 29 (2007), 199–250.

    MathSciNet  MATH  Google Scholar 

  42. A. Papadopoulos, On Hilbert’s fourth problem, in Handbook of Hilbert Geometry, European Mathematical Society Publishing House, Zürich, 2014, pp. 391–432.

    Google Scholar 

  43. A. Papadopoulos, and M. Troyanov, From Funk to Hilbert geometry, in Handbook of Hilbert Geometry, European Mathematical Society Publishing House, Zürich, 2014, pp. 33–68.

    Google Scholar 

  44. S. Reich, Averaged mappings in the Hilbert ball, J. Math. Anal. Appl. 109 (1985), 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Reich and D. Shoikhet, The Denjoy-Wolff theorem, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 219–240.

    MathSciNet  MATH  Google Scholar 

  46. S. Reich and D. Shoikhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, Imperial College Press, London, 2005.

    Book  MATH  Google Scholar 

  47. D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games, Israel J. Math. 121 (2001), 221–246.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Stachura, Iterates of holomorphic self-maps of the unit ball in Hilbert space, Proc. Amer. Math. Soc. 93 (1985), 88–90.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc. 14 (1963), 438–443.

    MathSciNet  MATH  Google Scholar 

  50. C. Walsh, The horofunction boundary of the Hilbert geometry, Adv. Geom. 8 (2008), 503–529.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Wolff, Sur l’itération des fonctions bornées, C. R. Acad. Sci. Paris, Série 1 182 (1926), 200–201.

    MATH  Google Scholar 

  52. J. Wolff, Sur une généralisation d’un théoreme de Schwartz, C. R. Acad. Sci. Paris, Série 1 183 (1926), 500–502.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas Lemmens.

Additional information

Supported by EPSRC grant EP/J008508/1.

Partially supported by NSFDMS 1201328.

Supported by EPSRC grant EP/J008508/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmens, B., Lins, B., Nussbaum, R. et al. Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces. JAMA 134, 671–718 (2018). https://doi.org/10.1007/s11854-018-0022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0022-2

Navigation