Skip to main content
Log in

Arithmetic three-spheres theorems for quasilinear Riccati type inequalities

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider arithmetic three-spheres inequalities for solutions of certain second order quasilinear elliptic differential equations and inequalities with a Riccati-type drift term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems 25 (2009), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Brummelhuis, Three-spheres theorem for second order elliptic equations, J. Anal. Math. 65 (1995), 179–206.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. DiBenedetto, C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. A. Dow, Three-curves theorems for quasilinear inequalities, Duke Math. J. 41 (1974), 473–482.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Fraas and Y. Pinchover, Isolated singularities of positive solutions of p-Laplacian type equations in R d, J. Differential Equations 254 (2013), 1097–1119.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations Oxford University Press, New York, 1993.

    MATH  Google Scholar 

  8. J. Korevaar and J. L. M. Meyers, Logarithmic convexity for supremum norms of harmonic functions, Bull. London Math. Soc. 26 (1994), 353–362.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.

    MATH  Google Scholar 

  10. E. M. Landis, Some questions in the qualitative theory of second-order elliptic equations (case of several independent variables), Uspehi Mat. Nauk 18 (1963), 3–62.

    MathSciNet  Google Scholar 

  11. E. M. Landis, A three-spheres theorem, Dokl. Akad. Nauk SSSR 148 (1963), 277–279.

    MathSciNet  Google Scholar 

  12. C. L. Lin, S. Nagayasu, and J. N. Wang, Quantitative uniqueness for the power of the Laplacian with singular coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 513–529.

    MathSciNet  MATH  Google Scholar 

  13. C. L. Lin, S. Nagayasu, and J. N. Wang, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients, Rev. Mat. Iberoam. 27 (2011), 475–491.

    Article  MathSciNet  Google Scholar 

  14. J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, Providence, RI, 1997.

    Book  MATH  Google Scholar 

  15. O. Martio, Counterexamples for unique continuation, Manuscripta Math. 60 (1988), 21–47.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Miklyukov, A. Rasila, and M. Vuorinen, Three spheres theorem for p-harmonic functions, Houston J. Math. 33 (2007), 1215–1230.

    MathSciNet  MATH  Google Scholar 

  17. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 95–100.

    MathSciNet  MATH  Google Scholar 

  19. M. H. Protter and H. F. and Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984

    Book  MATH  Google Scholar 

  20. N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Výborný, The Hadamard three-circles theorems for partial differential equations, Bull. Amer. Math. Soc. 80 (1973), 81–84.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Výborný, The Hadamard three-circles theorems for nonlinear equations, J. Austral. Math. Soc. Ser. A 49 (1990), 297–302.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Granlund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granlund, S., Marola, N. Arithmetic three-spheres theorems for quasilinear Riccati type inequalities. JAMA 134, 255–271 (2018). https://doi.org/10.1007/s11854-018-0009-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0009-z

Navigation