Skip to main content
Log in

Decoupling inequalities and some mean-value theorems

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The purpose of this paper is to present some further applications of the general decoupling theory from [B-D] and [B-D2] to certain diophantine issues. In particular, we consider mean value estimates relevant to the Bombieri- Iwaniec approach to exponential sums and arising in the work of Robert and Sargos [R-S]. Our main input is a new mean-value theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bourgain and C. Demeter, The proof of the l 2-decoupling conjecture, Ann. of Math. (2), 182 (2015), 351–389.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain and C. Demeter, Decouplings for curves and hypersurfaces with nonzero Gaussian curvature, J. Anal.Math., 133 (2017), 279–311.

    Article  Google Scholar 

  3. J. Bourgain and L. Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21 (2011), 1239–1295.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bombieri and H. Iwaniec, On the order of ξ (1/2 + it), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 449–472.

    MathSciNet  MATH  Google Scholar 

  5. E. Bombieri and H. Iwaniec, Some mean value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 473–486.

    MathSciNet  MATH  Google Scholar 

  6. S. W. Graham and G. Kolesnik, Van der Corput’s Method of Exponential Sums, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  7. M. N. Huxley, Area, Lattice Points and Exponential Sums, The Clarendon Press, Oxford University Press, New York, 1996.

    MATH  Google Scholar 

  8. M. N. Huxley, Exponential sums and the Riemann zeta function IV, Proc. London Math. Soc. (3) 66 (1993), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. N. Huxley, Exponential sums and the Riemann zeta function V, Proc. London Math. Soc. (3) 90 (2005), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. N. Huxley and G. Kolesnik, Exponential sums and the Riemann zeta function III, Proc. London Math. Soc. (3) 62 (1991), 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Parsell, A note on Weyl’s inequality for eighth powers, Rocky Mountain J. Math. 44 (2014), 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Robert and P. Sargos, Un théorème de moyenne pour les sommes d’exponentielles. Application à l’inégatité de Weyl, Publ. Inst. Math. (Beograd) N.S., 67 (2000), 14–30.

    MATH  Google Scholar 

  13. T. Wooley, Mean value estimates for odd cubic Weyl sums, Bull. London Math. Soc., 47 (2015), 946–957.

    MathSciNet  MATH  Google Scholar 

  14. T. Wooley, Translation invariance, exponential sums and Waring’s problem, arXiv:1404.3508v1[math.NT].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bourgain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgain, J. Decoupling inequalities and some mean-value theorems. JAMA 133, 313–334 (2017). https://doi.org/10.1007/s11854-017-0035-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-017-0035-2

Navigation