Skip to main content
Log in

Hardy inequalities and Assouad dimensions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We establish both sufficient and necessary conditions for weighted Hardy inequalities in metric spaces in terms of Assouad (co)dimensions. Our sufficient conditions in the case where the complement is thin are new, even in euclidean spaces, while in the case of a thick complement, we give new formulations for previously known sufficient conditions which reveal a natural duality between these two cases. Our necessary conditions are rather straight-forward generalizations from the unweighted case but, together with some examples, indicate the essential sharpness of our results. In addition, we consider the mixed case in which the complement may contain both thick and thin parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aikawa, Quasiadditivity of Riesz capacity, Math. Scand. 69 (1991), 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Aikawa, Quasiadditivity of capacity and minimal thinness, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 65–75.

    MathSciNet  MATH  Google Scholar 

  3. H. Aikawa and M. Essén, Potential Theory—Selected Topics, Springer-Verlag, Berlin, 1996.

    Book  MATH  Google Scholar 

  4. A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, European Mathematical Society (EMS), Zürich, 2011.

    Book  MATH  Google Scholar 

  5. A. Björn, J. Björn, and J. Lehrbäck, Sharp capacity estimates for annuli in weighted Rn and in metric spaces, Math. Z., to appear. doi:10.1007/s00209-0016-1797-4.

  6. A. Björn, J. Björn, and N. Shanmugalingam, Sobolev extensions of Hölder continuous and characteristic functions on metric spaces, Canad. J. Math. 59 (2007), 1135–1153.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Björn, P. MacManus, and N. Shanmugalingam, Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339–369.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Dyda and A. V. Vähäkangas, A framework for fractional Hardy inequalities, Ann. Acad. Sci. Fenn. Math. 39 (2014), 675–689.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, JohnWiley & Sons, Ltd., Chichester, 1990.

    MATH  Google Scholar 

  10. J. Fraser, Assouad type dimensions and homogeneity of fractals, Trans. Amer. Math. Soc. 366 (2014), 6687–6733.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Hajłasz, Pointwise Hardy inequalities, Proc. Amer. Math. Soc. 127 (1999), 417–423.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer.Math. Soc. 145 (2000), no. 688.

    Google Scholar 

  14. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed, Cambridge University Press, Cambridge, 1952.

    MATH  Google Scholar 

  15. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  16. J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces: an Approach Based on Upper Gradients, Cambridge University Press, Cambridge, 2015.

    Book  MATH  Google Scholar 

  17. L. Ihnatsyeva and A. V. Vähäkangas, Hardy inequalities in Triebel–Lizorkin spaces II. Aikawa dimension, Ann. Mat. Pura Appl. (4) 94 (2015), 479–493.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Käenmäki, J. Lehrbäck, and M. Vuorinen, Dimensions, Whitney covers, and tubular neighborhoods, Indiana Univ. Math. J. 62 (2013), 1861–1889.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2008), 575–599.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Korte, J. Lehrbäck, and H. Tuominen, The equivalence between pointwise Hardy inequalities and uniform fatness, Math. Ann. 351 (2011), 711–731.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Korte and N. Shanmugalingam, Equivalence and self-improvement of p-fatness and Hardy’s inequality, and association with uniform perfectness, Math. Z. 264 (2010), 99–110.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Koskela and J. Lehrbäck, Weighted pointwise Hardy inequalities, J. London Math. Soc. (2) 79 (2009), 757–779.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Koskela and X. Zhong, Hardy’s inequality and the boundary size, Proc. Amer. Math. Soc. 131 (2003), 1151–1158.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. G. Larman, A new theory of dimension, Proc. London Math. Soc. (3) 17 (1967), 178–192.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Lehrbäck, Weighted Hardy inequalities and the size of the boundary, Manuscripta Math. 127 (2008), 249–273.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Lehrbäck, Self-improving properties of weighted Hardy inequalities, Adv. Calc. Var. 1 (2008), 193–203.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Lehrbäck, Necessary conditions for weighted pointwise Hardy inequalities, Ann. Acad. Sci. Fenn. Math. 34 (2009), 437–446.

    MathSciNet  MATH  Google Scholar 

  28. J. Lehrbäck, Weighted Hardy inequalities beyond Lipschitz domains, Proc. Amer.Math. Soc. 142 (2014), 1705–1715.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Lehrbäck and N. Shanmugalingam, Quasiadditivity of variational capacity, Potential Anal. 40 (2014), 247–265.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Lehrbäck and H. Tuominen, A note on the dimensions of Assouad and Aikawa, J. Math. Soc. Japan 65 (2013), 343–356.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 23–76.

    MathSciNet  MATH  Google Scholar 

  33. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  34. S. Secchi, D. Smets, and M. Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811–815.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  36. A. Wannebo, Hardy inequalities, Proc. Amer. Math. Soc. 109 (1990), 85–95.

    Article  MathSciNet  MATH  Google Scholar 

  37. Q. H. Yang, Hardy type inequalities related to Carnot–Carathéodory distance on the Heisenberg group, Proc. Amer Math. Soc. 141 (2013), 351–362.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Lehrbäck.

Additional information

The author has been supported by the Academy of Finland, grant no. 252108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehrbäck, J. Hardy inequalities and Assouad dimensions. JAMA 131, 367–398 (2017). https://doi.org/10.1007/s11854-017-0013-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-017-0013-8

Navigation