Skip to main content
Log in

Topological isomorphism for rank-1 systems

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We define the Polish space R of non-degenerate rank-1 systems. Each non-degenerate rank-1 system can be viewed as a measure-preserving transformation of an atomless, σ-finite measure space and as a homeomorphism of a Cantor space. We completely characterize when two non-degenerate rank-1 systems are topologically isomorphic. We also analyze the complexity of the topological isomorphism relation on R, showing that it is \({F_\sigma }\) as a subset of R× R and bi-reducible to E 0. We also explicitly describe when a non-degenerate rank-1 system is topologically isomorphic to its inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Ageev, The generic automorphism of a Lebesgue space is conjugate to a G-extension for any finite abelian group G, Dokl. Akad. Nauk 374 (2000), 439–442.

    MathSciNet  MATH  Google Scholar 

  2. J. Clemens, Isomorphism of subshifts is a universal countable Borel equivalence relation, Israel J. Math. 170 (2009), 113–123.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Clemens, Isomorphism of free G-subflows, manuscript, 2010.

  4. R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer.Math. Soc. 341 (1994), 193–225.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Eremenko and A. Stepin, Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation, Mat. Sb. 195 (2004), 95–108.

    MathSciNet  MATH  Google Scholar 

  6. S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35–65.

    MathSciNet  MATH  Google Scholar 

  7. A. Fieldsteel, An uncountable family of prime transformations not isomorphic to their inverses, unpublished manuscript.

  8. M. Foreman, D. J. Rudolph, and B. Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2) 173 (2011), 1529–1586.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Gao, S. Jackson, and B. Seward, Group colorings and Bernoulli subflows, Mem. Amer.Math. Soc. 241 (2015), no. 1141.

  11. P. R. Halmos and J. von Neumann, Operator methods in classical mechanics II, Ann. of Math. (2) 43 (1942), 332–350.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Hill, Centralizers of rank-one homeomorphisms, Ergodic Theory Dynam. Systems 34 (2014), 543–556.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Hjorth, On invariants for measure preserving transformations, Fund. Math. 169 (2001), 51–84.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. del Junco, M. Rahe, and L. Swanson, Chacon’s automorphism has minimal self joinings, J. Anal. Math. 27 (1980), 276–284.

    Article  MATH  Google Scholar 

  15. A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  16. J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363–384.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. King, The generic transformation has roots of all orders, Colloq. Math. 84–85 (2000), 521–547.

    MathSciNet  MATH  Google Scholar 

  18. J. Melleray and T. Tsankov, Generic representations of abelian groups and extreme amenability, Israel J. Math. 195 (2013), 129–167.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math. 4 (1970), 337–352.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford University Press, New York, 1990.

    MATH  Google Scholar 

  21. T. de la Rue and J. de Sam Lazaro, Une transformation générique peutêtre insérée dans un flot, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 121–134.

    Article  Google Scholar 

  22. S. Solecki, Closed subgroups generated by generic measure automorphisms, Ergodic Theory Dynam. Systems 34 (2014), 1011–1017.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. V. Tikhonov, Embeddings of lattice actions in flows with multidimensional time, Mat. Sb. 197 (2006), 97–132.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Gao.

Additional information

S. G. acknowledges the US NSF grants DMS-0901853 and DMS-1201290 for the support of his research.

A. H. acknowledges the US NSF grant DMS-0943870 for the support of his research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Hill, A. Topological isomorphism for rank-1 systems. JAMA 128, 1–49 (2016). https://doi.org/10.1007/s11854-016-0001-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0001-4

Keywords

Navigation