Skip to main content
Log in

Multiple recurrence and convergence results associated to \({\text{F}}_P^\omega \)-actions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Using an ergodic inverse theorem obtained in our previous paper, we obtain limit formulae for multiple ergodic averages associated with the action of \({\text{F}}_p^\omega = \oplus {{\text{F}}_p}\). From this we deduce multiple Khintchine-type recurrence results analogous to those for ℤ-systems obtained by Bergelson, Host, and Kra, and also present some new counterexamples in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Austin, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2010), 321–338.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. A. Behrend, On sets of integers which contain no three in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331–332.

    Article  MathSciNet  Google Scholar 

  3. V. Bergelson, Ergodic theory and Diophantine problems, Topics in Symbolic Dynamics and Applications, Cambridge Univ. Press, Cambridge, 2000, pp. 167–205.

    Google Scholar 

  4. V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), 261–303.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Bergelson, A. Leibman, and R. McCutcheon Polynomial Szemeredi theorem for countable modules over integral domains and finite fields, J. Analyse Math. 95 (2005), 243–296.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Bergelson, T. C. Tao, and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of \({F^\omega }\), Geom. Funct. Anal. 19 (2010), 1539–1596.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. P. Conze and E. Lesigne, Théorèmes ergodique pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143–175.

    MATH  MathSciNet  Google Scholar 

  8. J. P. Conze and E. Lesigne. Sur un théorème ergodique pour des mesures diagonales, Probabilités, Univ. Rennes I, Rennes, 1988, pp. 1–31.

    Google Scholar 

  9. J. P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, C. R. Acad. Sci. Paris, Série I, 306 (1988), 491–493.

    MATH  MathSciNet  Google Scholar 

  10. T. de la Rue, An introduction to joinings in ergodic theory, Discrete Contin. Dyn. Syst. 15 (2006), 121–142.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc. 360 (2008), 5435–5475.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Følner, On groups with full Banach mean value, Math Scand. 3 (1955), 243–254.

    MathSciNet  Google Scholar 

  13. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Furstenberg, Recurrence in Ergodic theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    Book  MATH  Google Scholar 

  15. H. Furstenberg and Y. Katznelson An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J. Analyse Math. 45 (1985), 117–168.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Furstenberg and B. Weiss, A mean ergodic theorem for \(\frac{1}{N}\sum\nolimits_{n = 1}^N {f({T^n}x)g({T^{{n^2}}}} x)\), Convergence in Ergodic Theory and Probability, de Gruyter, Berlin, 1996, pp. 193–227.

  17. B. Green, Montréal notes on quadratic Fourier analysis, Additive Combinatorics, Amer. Math. Soc., Providence, RI, 2007, pp. 69–102.

  18. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. 36 (1933), 29–95.

    Google Scholar 

  20. B. Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Host and B. Kra. Personal communication, 2001.

  22. B. Host and B. Kra, Averaging along cubes, Modern Dynamical Systems and Applications, Cambridge University Press, Cambridge, 2004, pp. 123–144.

    Google Scholar 

  23. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of rotations of a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Petresco, Sur les commutateurs, Math. Z. 61 (1954), 348–356.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27 (1980), 701–717.

    Article  MATH  Google Scholar 

  28. B. Szegedy, Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups, arXiv:1011.1057v1[math.CO]

  29. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299–345.

    Google Scholar 

  30. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems 28 (2008), 657–688.

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Tao and T. Ziegler, The inverse conjecture for the Gowers norms over finite fields via the correspondence principle, Anal. PDE 3 (2010), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Tao and T. Ziegler, The inverse conjecture for the Gowers norm over finite fields in low characteristic, Ann. Comb. 16 (2012), 121–188.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Towsner, Convergence of diagonal ergodic averages, Ergodic Theory Dynam. Systems 29 (2009), 1309–1326.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73–116.

    MATH  Google Scholar 

  35. V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), 1667–1688.

    Article  MATH  MathSciNet  Google Scholar 

  37. Q. Zhang On convergence of the averages \(\frac{1}{N}\sum\nolimits_{n = 1}^N {{f_1}({R^n}x){f_2}({S^n}x){f_3}({T^n}x)} \), Monatsh. Math. 122 (1996), 275–300.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Ziegler, Non-conventional ergodic averages, PhD Thesis, The Hebrew University, 2003.

  39. T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), 1357–1370.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53–97.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373–409.

    MATH  MathSciNet  Google Scholar 

  42. P. Zorin-Kranich, Norm convergence of multiple ergodic averages on amenable groups, J. Anal. Math., to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Bergelson.

Additional information

The first author is supported by support NSF grant DMS-1162073.

The second author is supported by NSF grant DMS-0649473 and by a Simons Investigator Award.

The third author is supported by ISF grant 407/12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergelson, V., Tao, T. & Ziegler, T. Multiple recurrence and convergence results associated to \({\text{F}}_P^\omega \)-actions. JAMA 127, 329–378 (2015). https://doi.org/10.1007/s11854-015-0033-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0033-1

Keywords

Navigation