Skip to main content
Log in

One-dimensional wave equations defined by fractal Laplacians

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study one-dimensional wave equations defined by a class of fractal Laplacians. These Laplacians are defined by fractal measures generated by iterated function systems with overlaps, such as the well-known infinite Bernoulli convolution associated with the golden ratio and the three-fold convolution of the Cantor measure. The iterated function systems defining these measures do not satisfy the post-critically finite condition or the open set condition. Using second-order self-similar identities introduced by Strichartz et al., we discretize the equations and use the finite element and central difference methods to obtain numerical approximations of the weak solutions. We prove that the numerical solutions converge to the weak solution and obtain estimates for the rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Bird, S. M. Ngai, and A. Teplyaev, Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec 27 (2003), 135–168.

    MATH  MathSciNet  Google Scholar 

  2. J. Chen and S. M. Ngai, Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps, J. Math. Anal. Appl. 364 (2010), 222–241.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Coletta, K. Dias, and R. S. Strichartz, Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs’ phenomenon, Fractals 12 (2004), 413–449.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Dalrymple, R. S. Strichartz, and J. P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5 (1999), 203–284.

    Article  MATH  MathSciNet  Google Scholar 

  5. Q. R. Deng and K. S. Lau, Open set condition and post-critically finite self-similar sets, Nonlinearity 21 (2008), 1227–232.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. C. Evans, Partial Differential Equations, second ed., American Mathematical Society, Providence, RI, 2010.

    MATH  Google Scholar 

  7. K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd edition, John Wiley & Sons, Ltd., Hoboken, NJ, 2003.

    Book  MATH  Google Scholar 

  8. W. Feller, On second order differential operators, Ann. of Math. (2) 61 (1955), 90–105.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504.

    MATH  MathSciNet  Google Scholar 

  10. U. Freiberg, Analytical properties of measure geometric Krein-Feller-operators on the real line, Math. Nachr. 260 (2003), 34–47.

    Article  MATH  MathSciNet  Google Scholar 

  11. U. Freiberg, Dirichlet forms on fractal subsets of the real line, Real Anal. Exchange 30 (2004/05), 589–603.

    MathSciNet  Google Scholar 

  12. U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math. 17 (2005), 87–104.

    Article  MATH  MathSciNet  Google Scholar 

  13. U. Freiberg and J. U. Löbus, Zeros of eigenfunctions of a class of generalized second order differential operators on the Cantor set, Math. Nachr. 265 (2004), 3–14.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Fujita, A fractional dimension, self-similarity and a generalized diffusion operator, Probabilistic Methods in Mathematical Physics, Academic Press, Boston, MA, 1987, pp. 83–90.

    Google Scholar 

  15. I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4. Applications of Harmonic Analysis, Academic Press, New York-London, 1964.

    Google Scholar 

  16. A. Grigor’yan and J. Hu, Heat kernels and Green functions on metric measure spaces, Canad. J. Math. 66 (2014), 641–699.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Grigor’yan and A. Telcs, Two-sided estimates of heat kernels on metric measure spaces, Ann. Probab. 40 (2012) 1212–1284.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. E. Hare, B. A. Steinhurst, A. Teplyaev, and D. Zhou, Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals, Math. Res. Lett. 19 (2012), 537–553.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Hu, K. S. Lau, and S. M. Ngai, Laplace operators related to self-similar measures on Rd, J. Funct. Anal. 239 (2006), 542–565.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. S. Kac and M. G. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl. (2) 103 (1974), 19–102.

    MATH  Google Scholar 

  22. J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  23. J. Kigami, Volume doubling measures and heat kernel estimates on self-similar sets, Mem. Amer. Math. Soc. 199 (2009), no. 932.

  24. J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc. 216 (2012), no. 1015.

  25. K. S. Lau and S. M. Ngai, Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J. 49 (2000), 925–972.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. T. Lee, Infinite propagation speed for wave solutions on some P.C.F. fractals, arXiv: 1111.2938v3[math.AP]

  27. R. Meyers, R. S. Strichartz, and A. Teplyaev, Dirichlet forms on the Sierpiński gasket, Pacific J. Math. 217 (2004), 149–174.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Molchanov and B. Vainberg, Wave propagation in periodic networks of thin fibers, Waves Random Complex Media 20 (2010), 260–275.

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Naimark and M. Solomyak, On the eigenvalue behaviour for a class of operators related to self-similar measures ond, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 837–842.

    MATH  MathSciNet  Google Scholar 

  30. K. Naimark and M. Solomyak, The eigenvalue behaviour for the boundary value problems related to self-similar measures ond, Math. Res. Lett. 2 (1995), 279–298.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. M. Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math. 63 (2011), 648–688.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277–304.

    Article  MathSciNet  Google Scholar 

  33. M. Solomyak and E. Verbitsky, On a spectral problem related to self-similar measures, Bull. London Math. Soc. 27 (1995), 242–248.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.

    MATH  Google Scholar 

  35. R. S. Strichartz, A. Taylor, and T. Zhang, Densities of self-similar measures on the line, Experiment. Math. 4 (1995), 101–128.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. S. Strichartz and A. Teplyaev, Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math. 116 (2012), 255–297.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), 1199–208.

    MATH  MathSciNet  Google Scholar 

  38. R. S. Strichartz, Laplacians on fractals with spectral gaps have nicer Fourier series, Math. Res. Lett. 12 (2005), 269–274.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. S. Strichartz and M. Usher, Splines on fractals, Math. Proc. Cambridge Philos. Soc. 129 (2000), 331–360.

    Article  MATH  MathSciNet  Google Scholar 

  40. R. S. Varga, Matrix Iterative Analysis, second revised and expanded edition, Springer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  41. J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

  42. P. L. Yung, Doubling properties of self-similar measures, Indiana Univ. Math. J. 56 (2007), 965–990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Fun-Choi Chan.

Additional information

The first two authors were supported in part by a Faculty Research Grant from Georgia Southern University.

The second author is also supported in part by an HKRGC grant and National Natural Science Foundation of China grant 11271122.

The third author is supported in part by NSF grant DMS-0505622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J.FC., Ngai, SM. & Teplyaev, A. One-dimensional wave equations defined by fractal Laplacians. JAMA 127, 219–246 (2015). https://doi.org/10.1007/s11854-015-0029-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0029-x

Keywords

Navigation