Skip to main content
Log in

Entropies realizable by block gluing ℤd shifts of finite type

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In [9], Hochman and Meyerovitch gave a complete characterization of the set of topological entropies of ℤd shifts of finite type (SFTs) via a recursion-theoretic criterion. However, the ℤd SFTs they constructed in the proof are relatively degenerate and, in particular, lack any form of topological mixing, leaving open the question of which entropies can be realized within ℤd SFTs with (uniform) mixing properties. In this paper, we describe some progress on this question. We show that for α ∈ ℝ +0 to be the topological entropy of a block gluing ℤ2 SFT, it cannot be too poorly computable; in fact, it must be possible to compute approximations to α within arbitrary tolerance in time \({2^{O(1/{\epsilon ^2})}}\). On the constructive side, we present a new technique for realizing a large class of computable real numbers as entropies of block gluing ℤd SFTs for any d > 2. As a corollary of our methods, we construct, for any N > 1, a block gluing ℤd SFT (d > 2) with entropy logN but without a full N-shift factor, strengthening previous work [6] by Boyle and the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aubrun and M. Sablik, Simulation of effective subshifts by two-dimensional subshifts of finite type, Acta Appl. Math. 126 (2013), 35–63.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. J. Baxter, Hard hexagons: exact solution, J. Physics A 13 (1980), 1023–1030.

    Article  Google Scholar 

  3. R. J. Baxter, Planar lattice gases with nearest-neighbor exclusion, Ann. Comb. 3 (1999), 191–203.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66 (1966).

  5. M. Boyle, R. Pavlov, and M. Schraudner, Multidimensional sofic shifts without separation and their factors, Trans. Amer. Math. Soc. 362 (2010), 4617–4653.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Boyle and M. Schraudner, ℤd shifts of finite type without equal entropy full shift factors, J. Difference Equ. Appl. 15 (2009), 47–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Friedland, P. Lundow, and K. Markström, The 1-vertex transfer matrix and accurate estimation of channel capacity, IEEE Trans. Inform. Theory 56 (2010), 3692–3699.

    Article  MathSciNet  Google Scholar 

  8. M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math. 176 (2009), 131–167.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2) 171 (2010), 2011–2038.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, 1979.

    MATH  Google Scholar 

  11. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1938.

    Google Scholar 

  12. P. W. Kasteleyn, The statistics of dimers on a lattice I: the number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209–1225.

    Article  MATH  Google Scholar 

  13. E. H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev. Lett. 18 (1967), 692–694.

    Article  Google Scholar 

  14. D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), 283–300.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Lind and B. Marcus, Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  16. M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  17. S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Anal. Math. 53 (1989), 139–186.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Pavlov, Perturbations of multidimensional shifts of finite type, Ergodic Theory Dynam. Systems 31 (2011), 483–526.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Pavlov, Approximating the hard square entropy constant with probabilistic methods, Ann. Probab. 40 (2012), 2362–2399.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Radin, Miles of Tiles, American Mathematical Society, Providence, RI, 1999.

    Book  MATH  Google Scholar 

  21. R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 11 (1971), 177–190.

    Article  Google Scholar 

  22. M. Schraudner, Projectional entropy and the electrical wire shift, Discrete Contin. Dyn. Syst. 26 (2010), 333–346.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie Pavlov.

Additional information

The second author was partially supported by Basal project CMM, Universidad de Chile, by FONDECYT regular project 1100719, and by CONICYT Proyecto Anillo ACT 1103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, R., Schraudner, M. Entropies realizable by block gluing ℤd shifts of finite type. JAMA 126, 113–174 (2015). https://doi.org/10.1007/s11854-015-0014-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0014-4

Keywords

Navigation