Skip to main content
Log in

Vector energy and large deviation

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

For d nonpolar compact sets K 1, …, K d ⊂ ℂ, admissible weights Q 1, …, Q d and a positive semidefinite interaction matrix C = (c i, j ) i, j=1, …, d with no zero column, we define natural discretizations of the weighted energy

$${E_Q}(\mu ): = \sum\limits_{i,j = 1}^d {{c_{i,j}}I({\mu _i},{\mu _j}) + 2\sum\limits_{j = 1}^d {\int_{{K_j}} {{Q_j}d{\mu _j}} } } $$

of a d-tuple of positive measures µ = (µ1, …, µ d ) ∈ M r (K), where µ j is supported in K j and has mass r j . We have an L -type discretization W(µ) and an L 2-type discretization J(µ) defined using a fixed measure ν = (ν 1, …, ν d ). This leads to a large deviation principle for a canonical sequence {σ k } of probability measures on M r (K) if ν is a strong Bernstein-Markov measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ancona, Sur une conjecture concernant la capacité et l’effilement, in Théorie du potentiel, Springer, Berlin, 1984, pp. 34–68.

    Chapter  Google Scholar 

  2. G.W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices, Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

  3. B. Beckermann, V. Kalyagin, A. C. Matos, and F. Wielonsky, Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses, Constr. Approx. 37 (2013), 101–134.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s noncommutative entropy, Probab. Theory Related Fields 108 (1997), 517–542.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bleher and A. Kuijlaars, Random matrices with external source and multiple orthogonal polynomials, Int. Math. Res. Not. 2004, 109–129.

  6. T. Bloom, Orthogonal polynomials inn, Indiana Univ. Math. J. 46 (1997), 427–452.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Bloom, Weighted polynomials and weighted pluripotential theory, Trans. Amer. Math. Soc. 361 (2009), 2163–2179.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Bloom, Almost sure convergence for Angelesco ensembles, arXiv:1101.3562v2[math.PR]

  9. T. Bloom and N. Levenberg, Pluripotential energy and large deviation, Indiana Univ. Math. J. 62 (2013), 523–550.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Borwein, T. Erdelyi, and J. Zhang, Chebyshev polynomials and Markov-Bernstein type inequalities for rational spaces, J. London Math. Soc. (2) 50 (1994), 501–519.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  12. P. Eichelsbacher, J. Sommerauer, and M. Stolz, Large deviations for disordered bosons and multiple orthogonal polynomial ensembles, J. Math. Phys. 52 (2011), 073510.

    Article  MathSciNet  Google Scholar 

  13. A. A. Gonchar and E. A. Rakhmanov, On equilibrium problems for vector potentials, Russian Math. Surveys 40 (1985), 183–184.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Hardy and A. B. J. Kuijlaars, Weakly admissible vector equilibrium problems, J. Approx. Theory 164 (2012), 854–868.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Hardy and A. B. J. Kuijlaars, Large deviations for a non-centered Wishart matrix, Random Matrices Theory Appl. 2 (2013), 1250016.

    Article  MathSciNet  Google Scholar 

  16. A. Kuijlaars, Multiple orthogonal polynomial ensembles, in Recent Trends in Orthogonal Polynomeals and Approximation Theory, Contemp. Math. 507, Amer. Math. Soc., Providence RI, 2010, pp. 155–176.

    Chapter  Google Scholar 

  17. A. Kuijlaars, Multiple orthogonal polynomials in random matrix theory, Proceedings of the International Congress of Mathematician, Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1417–1432.

    Google Scholar 

  18. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Amer. Math. Soc. Providence, RI, 1991.

    MATH  Google Scholar 

  19. E. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

    Book  MATH  Google Scholar 

  20. H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bloom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloom, T., Levenberg, N. & Wielonsky, F. Vector energy and large deviation. JAMA 125, 139–174 (2015). https://doi.org/10.1007/s11854-015-0005-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0005-5

Keywords

Navigation